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The main results obtained and published during the period covered by this report, August 1988
- July 1989, are described below together with references given to the corresponding
publication.

1. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients,
(Henk A. Blom and Yaakov Bar-Shalom, JEEE Transactions on Automatic Control Vol. 33,
No. 8, August 1988)

An important problem in filtering for linear systems with Markovian switching coefficients
(dynamic multiple model systems) is the one of management of hypotheses, which is necessary
to limit the computational requirements. A novel approach to hypotheses merging has been
developed for this problem. The novelty lies in the timing of hypotheses merging. Wnen
applied to the problem of filtering for a linear system with Markovian coefficients this yields an
elegant way to derive the interacting muitiple model (IMM) algorithm. Evaluation of the IMM
algorithm makes it clear that it performs very well at a relatively low computational load. These
results imply a significant change in the state of the art of approximate Bayesian filtering for
systems with Markovian coefficients.

2. Failure Detection Via Recursive Estimation for a Class of Semi-Markov Switching Systems:
(L. Campo, P. Mookerjee and Y. Bar-Shalom, Proceedings 1988 TEEE CDC, Austin, Texas)

An area of current interest is the estimation of the state of discrete-time stochastic systems with
parameters which may switch among a finite set of values. The parameter switching process of
interest is modeled by a class of semi-Markov chains. This class of processes is useful in that
it pertains to many areas of interests such as the failure detectica problem, the target tracking
problem, socio-economic problems and in the problem of approximating nonlinear systems by
a set of linearized models. It is shown in this paper how the transition probabilities, which

go em the model switching at-each time step, can be inferred via the evaluation of the
conditional distribution of the sojourn time. Following this, a recursive state estimation
algorithm for dynamic systems with noisy observations and changing structures, which uses
the conditional sojourn time distribution, is derived and and applied to a failure detection
problem. 7
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3. Distributed Adaptive Estimation with Probabilistic Data Association, (K.C. Chang and Y.

Bar-Shalom, Automatica, Vol. 25, No. 3, pp. 359-369, 1989)

The probabilistic data association filter (PDAF) estimates the state of a target in a cluttered
environment. This suboptimal Bayesian approach assumes that the exact target and
measurement models are known. However, in most practical applications, there are difficulties
in obtaining an exact mathematical model of the physical process. In this paper, the problem of
estimating target states with uncertain measurement origins and uncertain system models in a
distributed manner is considered. First, a scheme'is described for local processing, then the
fusion algorithm which combines the local processed results into a global one is derived. The
algorithm can be applied for tracking a maneuvering target in a cluttered and low detection
environment with a distributed sensor network.

An Adaptive Dual Controller for a MIMO-ARMA System, (P. Mookerjee and Y. Bar-Shalom,
IEEE Transactions on Automatic Control, Vol. 34, No. 7, July 1989)

An explicit adaptive dual controller has been derived for a multiinput multioutput ARMA
system. The plant has constant but unknown parameters. The cautious controller witha
one-step horizon and a new dual controller with a two-step horizon are examined. In many
instances, the myopic cautious controller is seen to turn off and converges very slowly. The
dual controller maodifies the cautious control design by numerator and denominator correction
terms which depend upon the sensitivity functions of the expected future cost and avoids the
turn-off and slow convergence. Monte-Carlo comparisons based on parametric and
nonparametric staiistical analysis indicate the superiority of the dual controlier over the cautious
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5. ‘Time-Reversion of a Hybrid State Stochastic Difference System, (Henk A.P. Blom and
Yaakov Bar-Shalom, Proc. 1 IEEE Intn'l, Conf, on Control & Applications, Jerusaleni,

Israel, April 1989 to appear in IEEE Trans, Info, Theory, 1990)

This paper develops the reversion in time of a stochastic difference equation in a hybrid space,
with a Markovian solution. The reversion is obtained by a martingale approach, which
previously led to reverse time forms for stochastic equations with Gauss-Markov or diffusion
solutions. The reverse time equations follow from a particular non-canonical martingale
decomposition, while the reverse time equations for Gauss-Markov and diffusion solutions
followed from the canonical miartingale decomposition. The need for the non-canonical
decomposition stems from the hybrid state space situation. The non-Gaussian discrete time
situation leads to reverse time equations that incorporate a Bayesian estimation step.

6. A New Controller for Discrete-Time Stochastic Systems with Markovian Jump Parameters, (L.

Campo and Y. Bar-Shalom, 11th [FAC World Congress, Tallinn, USSR, Aug. 1990

A realistic stochastic control problem for hybrid systems with Markovian jump parameters may
have the switching parameters in both the state and measurement equations. Furthermore, both
the system state and the jump states may not be perfectly observed. Prior to this-work the only
existing implementable controller for this problem was based upon a heuristic multiple model
partitioning (MMP) and hypothesis pruning. In this paper a stochastic control algorithin for
stochastic systems with Markovian jump parameters was developed. The control algorithm is
derived through the use of stochastic dynamic progamming and is designed to be used for
realistic stochastic control problems, i.e., with noisy state obeservations. The state estimation
and model identification is done via the recently developed Interacting Multiple Model
algorithm. Simulation results show that a substantial reductior. in cost can be obtained by this
new control algorithm over the MMP scheme.
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i 7. From Piecewise Deterministic To Piecewise Diffusion Markov Processes, (Henk A.P. Blom,
% Proc, IEEE CDC 1988)
i
i

Piecewise Deterministic (PD) Markov processes form a remarkable class of hybrid state

; processes because, in contrast to most other hybrid state processes, they include a jump

‘ reflecting boundary and exclude diffusion. As such, they cover a wide variety of impulsively
or singularly controlled non-diffusion processes. Because PD processes are defined in a
pathwise way, they provide a framework to study the control of non-diffusion processes along
same lines as that of diffusions. An important generalization is to include diffusion in PD
processes, but, as pointed out by Davis, combining diffusion with a jump reflecting boundary
seems not possible within the present definition of PD processes. This paper presents PD
processes as pathwise unique solutions of an Itd stochastic differential equation (SDE), driven
by a Poisson random measure. Since such an SDE permits the inclusion of diffusion, this
approach leads to a large variety of piecewise diffusion Markov processes, represented by
pathwise unique SDE solutions.

8. Control of Discrete-Time Hybrid Stochastic Systems (L. Campo and Y. Bar-Shalom, to appear
in Proc. 1990 ACC, under review for IEEE T-AC).

A realistic stochastic control problem for hybrid systems with Markovian jump parameters can
have the switching parameters in both-the state and measureme .t equations. Furthermore, both
the system state and the jump states are, in-general, not perfectly observed. Currently there are
only two existing controllers for this problem. One is based upon a heuristic multiple model
partitioning (MMP) and hypothesis pruning. The other utilizes the entire future tree of models,
and is called the Full-Tree (FT) controller. The performance of the latter is superior to the
ﬁ former and their complexities are similar. In this paper we present a new stochastic control
i algorithm for stochastic systems with Markovian jump parameters. This control algorithm is
: derived through the use of stochastic dynamic programming and is designed to be used for
realistic stochastic control problems, i.e., with noisy state observations. This new scheme,
which is based upon the interaction of r (the number of mcdels) model-conditioned Riccati
equations, has a natural parallelism and is straightforward to implement. The state estimation
and model identification is done via the recently developed Interacting Multiple Model
| algorithm. Simuilation results show. that a substantial reduction in cost can be obtained by this
: | new control algorithm over the MMP scheme. Furthermore, the performance of the new
| algorithm is-shown to be practically the same as that of the FT scheme even though the new
i 'i scheme, which hasa fixed amount of computations at each step of the recursion, is much
i simpler to implement than both the MMP and FT algorithms.
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9. Discrete Time Point Process Filter for Image Based Target Mode Estimation (C. Yang and Y.
Bar-Shalom, to be submitted to 1990 TEEE CDO).

The performance of tracking and prediction systems of a maneuvering target can be improved
by using additional (and unconveniional) measurements of its apparent modes, typically
provided by an imiaging sensor. A model for the image-based observation channel for target
mode estimation in discrete time is presented in this paper. A multidimensional point process
i filter is obtained by making use of the discrete time point process theory and its utilization is
illustrated through simulation examples.

10. A New Approximation for the Partially Observed Jump Linear Quadratic Problem (C. Yang
and M. Mariton, submitted to Int'l. Journal of Systems Science, Oct. 1989).

We consider the Jump Linear Quadratic Problem where linear state dynamics are made
contingent upon the Markovian transition of a regime variable. It is desired to regulate the
state while minimizing a quadratic performance index. In the case of partial observations the
exact solution has proved to be elusive and, in this paper, we present a new approximation
based on the optimal solution of an averaged version of the original problem.’
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Markovian Switching Coefficients
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The Interacting Multiple Model Algorithm for Systems
with Markovian Switching Coefficients

HENK A. P. BLOM AND YAAKOV BAR-SHALOM

Abstract—An important p  blem I filtering for linear systems with
Markovian switching coefficienis (dynamic multiple model systems) is the
one of management of kypotheses, which is necessary to limit the
compuiational requirements. A novel approach to hypotbeses merging is
presented for this problem, The novelty Hes In the timing of kypotheses
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merzing. Whea ngplicd {a tie problem of filierlug for a linese system with
Markovina coefficlents this yieldz an elegant way to derive the luteracting
nultiple model (IMM) algorithar:. Evalcation of the IMM- algorithm
makes it clear. that it performs.very well at 2 reiatively low computations
losd, These.resulis feaply 2 sigaificst change In the sate-of the ari of
approximste Bayesisn fiitering for sysiems with Markovisn coclficesls,

{..INTRODUCTION.

In this contribution we present a novel approech to the problem of
filtering for a linear system with Markovian coefficients

xe= 20X+ (0w, n

with observations

Ye=h(@)x+g@)v (2)

8, is a finite state Markov chain taking values in {1, -, N} according to
a transition probability matrix #, and w;, v, are mutually independent
white Gaussian processes. The exact filter consists of a growing number
of linear Gaussian hypotheses, with the growth being exponential with the
time. Obviously, for filtering. we need recursive algorithms whose
complexity does not grow with time. With this, the main problem is to
avoid the exponential growth of the number of Gaussian hypotheses in an
efficient way.

This hypotheses management problem is also known for several ather
filtering situations [10], {5], [6], (9], and [4]. All these problems have
stimulated during the last two decades the development of a large variety
of approximation methods. For our problem the majority of these are
techriques that reduce the number of Gaussian hypotheses, by pruning
and/or merging of hypotheses. Well-known sxamples of this approach are
the detection estimation (DE) algorithms and the generalized pseudo
Bayes (GPB) algorithms, For overviews and comparisons see [}4], [7],
(12}, and [17]. None of the algorithms discussed appeared to have good
performance at modest computational load. Because of that, other
approaches have been also developed, mainly by way of approximating
the model (1), (2). Examples are the modified multiple model (MM)
algorithms [20], [7], the modified gain extended Kalman (MGEK) filter of
Song and Speyer [13], (7], and residual based methods (19], {2]. These
algorithms, however, also lack good performance at modest computa-
tional load in too many situations. In view of this unsatisfactory situation
and the practical importance of better solutions, the filtering problem for
the class of systems (1), (2) needed further study.

One item that has not received much attention in the past is the timing of
hypotheses reduction. It is common practice to reduce the number of
Gaussian hypotheses immediately after a measurement update. IndeeC, on
first sight there does not seem to be a better moment. However, in two
recent publications (3], (1], this point has been exploited to-develop,
respectively, the so-called IMM (interacting multiple model) and AFMM
(adaptive forgetting through multiple models) algorithms. The latter
exploits pruning to reduce the number of hypotheses, while the IMM
exploits merging. The IMM algorithm was the reason for a furiher
evaluation of the timing of hypotheses reduction. A novel approach to
hypotheses merging is presented for a dynamic MM situation, which leads
to an clegant derivation of the IMM algorithm. Mext Monte Carlo
simulations ace presented to judge the state of the art in MM filtering after
the introduction of the IMM algorithm.

II. TIMING OF HYPOTHESES REDUCTION

To show the possibilities of timing the hypothesis reduction, we start
with a filter cycle from one measurement update up to and including the
next measurement update. For this, we take a cycle of recursions for the
evolution of the conditional probability measure-of our hybrid state
Markov process (x,, 6,). This cycle reads as follows:

POl Y1} 2 P{,|Y,-1} 3

0018-9286/88/0800-0780501.00 © 1988 IEEE
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if P{6,]Y,-1} = 0 prune hypothesis 6;,

PLrteilBiets Yim) = plialds ¥d . (4)
PiiatlOns Yi] 2258 plx(6), Yoo ®)
PO Yomr} =2 P{8]Y) Q)
P8y Yio) =2 plx[8,, Vil )

For output purposes, we can use the law of total probability
plal Y= Z pluloi=i, YIP{O=ilY.}. ®
i
Let us take a closer look at the derivation of the above cycle., As v, and w;
are mutually independent, the-Bayes formula, which represeats (6) and

(7), follows easily from (2). From the evolution of system (1) follows (5).
The Chapman-Kolmogorov equation for the Markov chaint 8,

P{,=i|Y} =Y, HyP{6r1=] Yo} ©)
J

which represents (3), can be seen as a ‘‘mixing.” To derive a
representation of (d) we first introduce the following equation on the basis
of the law of total probability:

plxaal8=i, Yiod= Y (p1%rl8er=J, 6=, Vi)
)

* P{0=/10,=i, Vi }). (10
As 8, is independent of x,; if 8,., is known, we easily obtain
plxalbar =), 0=l Yia)=pxa]6-1 =), Yia).
Substitution of this and of the following:
P{fia=j16=" 4} =HyP{01=jl Y}/ P{8,=i]Yiei}
in (10) yields the desired . .. & ion of transition (4)

plaalbi=i, Y=Y i
7

1=41 Y1}

* Py =)y Vil P8 =il Vi), (1D)

Notice that the mixing of the densities in (11) is explicitly related to the
above-mentioned Markov properties of 6, and the conditional indepen-
dence of 8, and x,.y, given ;). According to the above filtering cycle
there are at any moment in time N densities on R” and N scalars. The
densities on R” are rarely Gaussian. Even if p[xp] Y] is Gaussian, then
plx)é = i, Y,) is in general a sum of N*-! weighted Gaussians
(Gaussian mixture). Explicit recursions for these N' individual Gaussians
and their weights can simply be obtained from the above filter cycle.
Obviously, the N times increase of the number of Gaussians during each
filter cycle is caused by (4) only.

In the sequence of ¢lementary transitions, (3) through (7), we can apply
a hypotheses reduction cither after (4), after (5), or after (7). We-ceview
these reduction timing pessibilities for the fixed depth merging hypotheses
reduction, This-fixed depth merging approach-implies that the Gaussian
hypotheses, for which the Markov chain paths are equivalent during the
recent past of some fixed depth, are merged to onie moment-matched
Gaussian hypothesis. The degrees of freedom in applying this fixed depth
merging approach are the chpig:e of the depth, d (= 1),-and the moment of
application. If the application is immediately after each. measurement
update pass (7), it yields the GPB (d + 1) algorithms [14], [163 In the
next section we derive the IMM algorithm by.applying the fixed depth
merging approach with depth, d = 1, after each pass of (4). It can casily
be verified that all other timing possxh:lmcs yield disguised versions of
IMM and GPB algorithms. Merging-afler (5) with d = | yiclds &
disguised but more complex IMM-algorithim, Merging either after (4) or
after (5) with d = 2 yielde a disguised but.more compiex GPBd
algorithm,

II. THE IMM ALGORITHM

The IMM algorithm cycle consists of the following four steps, of which
the first three steps are illustrated in Fig. 1.

1) Starting with the N weights g,(¢ — 1), the N means £,(¢ ~ 1) and
the N associated covariances B;(¢+ — 1, one computes the mixed injtial
condition for the filter matched to 6, = J, according to the following
equations:

Pt)= Hyby(t~ 1), if i(t)=0 prunc hypothesis i, (12)
J
2Ue=1)="7 Hyp(e= 1Lt =1)/p8), (13)
7
RI@=1)=3} Hypy(t=DIF-4= 1)+ (401~ 210 - DIL 1 Vpd0).
J

(14

2) Each of the N pairs £/(¢ — 1), Ri(t — 1) is used as input to a
Kalman filter matched to 6, = i. Time-extrapolation yields, %(¢), R;(¢),
and then, measurement updating yields, £(¢), Bi{1).

3) The N weights pi(¢) are updated from the xnnovatxons of the N
Kalman ﬁxtcrs,

Biy=c - p(1) - QI exp {-1/20]()Q7 ' )0} (15)

with ¢ denoting a normalizing constant

00} =y h(D)3(r) 16)
Qu(O)=h(DR(YAT(i)+8(DgT(i). an
4) For output purpose only, £ and K, are computed according to
=3 A% )
i
R=%; BOIK@O+ 120~ 210 17). (19)
{

Ouly step 1) is typical for the IMM algorithm. Specificaily, the mixing
represented by (13) and (14) and by the interaction box in Fig. 1, cannot
be found in the GPB algorithms. This is the key of the novel approach to
the timing of fixed depth hypotheses merging that yields the IMM
algorithm. We give a derivation of the key step 1).

Application of fixed depth merging with d = 1 implies that

POy =i, Vi)~ N{£00=1), Rt~ D}
Substitution of this in (11) immediately yields (13) and (14), with
=1) & E{xu1]0=F, Yy}
and
Rie-1)

the associated covariance. Finally, we introduce the approximation.

plxiilb=i, Yo J~N{2{~1), Ri(t~1)}

which guarantees that all subsequent IMM steps fit correctly.

Remark: The IMM can be approximated by the GPB1 algorithm by
replacing £(t — 1) and Ri(¢ = 1) in step.1) by #,.., and R,_,. Together
with (12) this approximates (13) and (14) in step 1) by, £'(+ = 1) = £,_,
and R'(¢ ~ 1) = R,_,. These equations are equivalent to (13) and (14) if.
cach compopent of H equals 1/N, which implies that §, is a sequence of
mutually independent stochastic variables. The latter is hardly ever the
case and we conclude that the reduction of the IMM to GPB! leads to a
significant performance degradation. Obviously, the computational loads
of IMM and GPBI are almost equivalent.

R
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IV. PERFORMANCE OF THE IMM ALGORITHM

Presently a comparison of the different filtering algoritiuns for systems
with Markovian coefficients with respect to their performance is
hampered by the analytical complexity of the problem [16], [15]. Because
of this, such comparisons necessarily rely on Monte Carlo simulations for
saecific examples. For our simulated examples we used the set of 19 cases
that have been developed by Westwood (18]. To make the comparison
more precise, we specify these cases and summarize the observed
performance results. In all 19 cases both x; and y, are scalar processes,
which satisfv x, = a(0)x,~; + b@)w + u(l)and y, = h(0)x +
80, with 8,.:8 = {0, 1}, u(¢) = 10. cos {2x¢/100), X, a Gaussian
variable with expectation 10 and variance 10, P{6, = 1} = P{f, = 0}
= 1/2, while Hy = (1 — 1/75) and Hyy = (1 ~ 1/7,). The parameters
a, b, h, g and the average sojourn times 7o and 7, of these 19 cases are
given in Table I.

The results of Westwood [18] show that, in all 19 cases the differences
in performance-of the GPB2 and the GPB3-algorithms are negligible,
while-in only seven cases (5, 6, 8, 16, 17, 18, 19) the differences in
performanceof the GPB! and the GPBR algorithms are negligible. To our
present comparison the other 12 cases (1, 2, 3,4, 7,9, 10, 11, 12, 13, 14,
15) are interesting. For each of these 12 cases we simulated the GPBI, the
GPB2; and the IMM algorithms and van Monte Carlo simulations,

-consisting of 100 runs from ¢ = 0 to ¢ = 100. For simplicity of
interpretation 6f the results we used one fixed path of 8 during all runs: 8
= (.cn thetime interval [0, 30, = l-on the interval {31,60],and 6 = 0
onthe interval-{61, 100}.

The results-of-cur simulationsfor the 12 interesting cases are as
follows. In six-cases(1,.2, 7, 12, 14, 15) both-the IMM and the GPB2
performed slightly better than the GPBU, while the IMM and the GPB2
pcrformca equally. wch For typical results, see.Fig, 2. In-the other six
cases bath the M and the GPB2 performed sigrificantly better than the

PBi For typical results  see Figs. 3 and 4,70f these six cases the IMM
and the GPBZ perfvmed four times equally well (cases 3, 4, 11, and 13)
and {wo times- =:g salficantly different (cases 9 and 10).

-On- the basis of-these-simulations-we can conclude that the IMM
performs_almost as weli as:the GPB2, while its computational load is
sbout that of GPB1. We can further differentiate this overall conclusion.
" Increasing-the parameters 7o-and 7, increases the difference i
pcrfornarce between GPB1 and GPB2, but not between IMM and GPB2,

o If a is being switched, then the IMM performs as well as the GPB2,
while the GPB1 sometimes stays significantly behind.

e If the white noise gains, b or g, are being switched, then the (MM
performs as well as the GPB2, while the GPBl somatimes stays
significantly behind.

o If only k is being switched, thent in some cases the IMM, and even
more often, the GPBI tend to diverge while the GPB2 works well,

Another interesting question is how the IMM compares to the modified
MM algorithm and the MGEK filter. Apart from the GPB algorithmns,
Westwood (18] also evaluated four more filters, the MM, the modified
MM, the MGEK, and a MGEK with a *‘postprocessor.”” For the 19 cases
there was only one algorithm: that outperformed the GPBI algorithm in
some cases. It was the MGEK filter in the cases 1, 3, and 4. He also found
that the MGEK filter performed in these cases inarginally or significandy
less good than the GPB2 algorithm. As the above experiments showed that

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 8, AUGUST 1988

TABLE
THE PARAMETERS OF THE 19 CASES OF WESTWOOD (18]
CASE | H-VALUES O~DEPENDENT VALUES
3 To | T1 | a0, | 60y, b00 | nio), 0 | g0, g0
1 40 20 .995,.990 1.0 1.0 1.0
2 40 20 .995,.950 5 1.0 5
3 40 20 .995,.990 A 1.0 5.0
4 200 | 100 .995,.960 N 1.0 5.0
5 40 20 ,995,.990 8.0 1.0 1.0
6 40 20 995,990 1.0 1.0 3
7 40 20 ,995,.900 5 1.0 20
8 40 20 ,995,.750 1.0 1.0 6
9 40 20 595 2.0 1.0,.95 5
10 40 20 995 1.0 1.0,.80 2
11 40 20 995 5 1.0,.80 .8
12 4 2 995 5 1.0,80 .8
13 200 100 .995 5 1.0,.80 .8
14 40 20 935 1,50 1.0 1.0
15 49 20° 995 1.0 1.0 1,50
16 10 2 95 5 1.0,0.0 10,20
17 200 5 .950,0.0 1.0 1.0 1.0
18 50 5 .950,1.2 1.0 1.0 1.0
19 10 2 .95 5 1.0 1.0,40.0
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L) ) 1S
° ) » « [ [ » © [ 1t

——t

Fig. 2. rms error for case 7, illustrative of the six cases (1, 2, 7, 12, 14, 15) where both

IMM and GPB2 perform slighdy better than GPBI.
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Fig.3. rms ecror for case 3, illustrative of the four cases (3. 4, 11, 13) where both IMM
and GPB2 perform belter than GPB1, while IMM and GPB2 perform equally well,

for cases 1, 3, and 4 the GPB2 and the IMM algocithm performed equally
well, one can coficlude that the MM, the modified MM, the MGEK, the
MGEK with *‘postprocessor,’”” and the GPB1 are in all 19 cases
outperiormed by the IMM algorithm.

On the basis of these comparisons one can conclude that for practical
filtering applications with N = 2, the IMM algorithm is the best first
choice. As the IMM algorithm has been developed on the basis of some
general hypotheses reduction principles, which are N-invariant, one can
reasonably expect that this is also true for larger N. But it is unlikely that
the IMM performs in all-applications aimost as good as the exact filter.
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Fig. 4. mms error for case 9, illustrative of the two cases (9 and 10) where IMM
performs better than GPBI, but slightly worse than GPB2 (in these two cases only A
jumps).

Therefore, if the IMM performs not well enough in a particular
application one should considet using a suitable GPB (=2} or DE
algorithm [14), or one might try to design a better algorithm by using
adaptive merging techniques [16]. The DE algorithm might possibly be
nnproved by the novel timing of hypotheses reduction [1]. If for a
particular application the performance of the selected algorithm has a too
high computational load, then it is best to try to exploit some geometrical
structure of the problem considered [2), [11).

In situations where estimation has to be done outside some time-critical
control loop, it is usually preferable to use a smoothing algorithm instead
of a filtering algorithm (8}, (14], {21). In view of the above filtering
results, this suggests that the ideas that underly the IMM algorithm can be
exploited to develop better smoothing algorithms.
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Failure Detection Via Recursive Estimalion for a Class of
Semi-Markov Switching Systems

L. Campo!, P. Mookerjee?, and Y. Bar-Shalom!

Abstract

An area of current {nterest is the estimation of
the state of discrete-time stochastic systems wilh
parameters which may switch among a finite set of
values. The parameler switching process of interest
Is modeled by a class of semi-Markov chains. This
class of processes is useful in that it pertains to
many areas of interests such a3 the failure deteclion
problem, Lthe target tracking problem, socioc-economic
problems and In the problem of approximating
nonlinear systems by a sel of linearized models. 1L
is shown in this paper how the transition
probabiliies, which govern the model switching at
each time step, can be inferred via the evaluation of
the conditional -distribution of the sojourn time,
Following this, » recursive state estimation
algorithm for dynamic systems with noisy observations
and changing structures, which uses the corditional
sojourn time distribution, is derived.

I Introduction

In this paper we are concerned with failure
detection via recursive estimation of parameters in
discrete~time dynamic systems. The topic of interest
is stochastic systems with abruptly changing
parameters i.e., model jumps. The recursive state
estimation algorithm for this problem developed in
this paper provides the conditional model
probabilities used for detecting the change in system
parameters which signify component failures.

The abruptly changing parameters, which switch
among a finlte set of values, are modeled as a Markov
or 3 semi-Markov chalin with known transition
statistics [M2,M3,M5-M8,G1]. Although the idea of
sem{-Markov chains Is appropriate for the model
concerned, the analysis presented in the above is
actually only for Markov chains (since the transition
probabilities were assumed fixed and the transitions
depended only on the latest state - see Eq. (8) in
(M2]). The process considered in this paper is of
the semi-Markov type and pertains to many areas of
interest. A fallure fn a component of a dynamical
system can be represented by a sudden change in the
systems parameters (BS,S1,Wil. Also, a repair to a
system represents a3 change in the parameters [85]).
Other areas that this class of processes pertains to
are the target tracking problem {81}, socio~economic
problems (62]) and the technigue of- approximating
grossly nonlinear systems by a sel of linearized.
models [M4,VI,V2].

The first treatment of estimation In a swilching
environment was in [Al] where the means and
covariances of the process and measurement noises
experienced jumps. As indicated in [C1), the optimum

{. University of Connecticut
Storrs, CT 06268
Supported by AFOSR Grant 34-0112

2. Villanova University
Villanova, PA 19085
Suprorted by the Grant from the Vice-President for
Academlc Affairs Office, Villanova University and
AFOSR Grant 84-0112.

state estimation in a multiple model enviconment is a
function of the elemental (“model-matched”) state
estimates obtained via estimators tuned to all
possible parameter histories. Thus, with time, the
estimator must keep Lrack of an exponentially growing
number of parameter history hypotheses. Even in the
case of Markov switching the estimation algorithm
requires exponentially growing memory {T{, T2].
Suboptimal. algorithms like the Generalized
Pseudo~Bayesian Algorithm (6PB} {Al, Cl, T2} and the
Interacting Hultiple-Model Algorithm (IMM) {82, B3,
84] are viable approaches to oblain a real-time
implementable estimatinn 3lrorithm, These algorithms;
rely on different hyopothesis merging techniques Lo
limit the memory and computational requirements [B4].

In {S2,€2] a semi-Markov switching problem was
cunsidered, but the jumps were assumed to be
perfectly observed. In [M9) an estimation scheme for
semi-Markov processes was developed based upon the
detection-estimation algorithm (DEA). This approach
is obtained by retaining a certain number of most
likely parameter history hypotheses. The estimation
schemes based upon the DEA {which discards all but a
number of most likely history hypotheses) and the GP8
or IMM (which use hypothesis merging) algorithms
represent different philosophies of algorithm
design. We present an example comparing the two
methods for 3 particular state estimation proBlem
later in this paper.

The problem is formulated in Section 2. . In
Section 3 the sojourn time conditional probability
mass functions and the conditional transition
probabilities which we derived in [Mia), are given
here for clarity and ease of reference. The
inclusion of Section 4, the state estimation
algorithm which was developed in [M1b], is for the
sake of completeness. -In Section 5 simulations are
presented, Preliminary results on this problem were
presented in {Mta, Mibl.

2. Formulation of the problem

The system is modeled by the equations
x{k) = FIM(K)] x(k-1) + v{k~1, M(k}] (2.1)
z(k) = H{M(K)]} x(k} ¢ wlkM(k])) (2.2)
where M(k) denotes the model “at time k" ~ in effect
during the sampling period ending at k. The process
and measurement noise sequences, v(k} and w(k), are
white and nwtually uncorrelated.
The model at time k {is assumed to be among the
possible r models

M(k) € (1,...r) (2.3)

for example
- FIMIK)=f) = F; (2.4)
v(k=1,M(k)=j} ~ N(u,-. O,) (2.5)

i.e., the structure of the system and/or the
statistics of the nolses might be different from
model to model. The mean u; of the noise can
model a maneyver or 3 system failure as a
deterministic input.

The model switching process to be considered here
is of Lhe seml-Markov type. The process Is specified
by a family of tLtransition matrices p”(r‘).

i.e., 1L is a "sojourn-time~dependent Markov” (STDM)
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chain, which belongs to the semi-Harkov class.
speclficauon of the STOM chain is more closely
related to. phv ical-models-hecause-It .does nol have
the arunclalxreslart of the tejoura-time counting
of the semi-Markay -process for victua! traasitioas?
and can capture important features in-agny realistic

The

situations. i - -

For the class of semi-Markov chains governing lhe
evolution of the system’s model-considered here, we
need the pdf of the sojourn time conditioned on the
observatlons, to Infer the transition probabilities.
The conditional transition probabilities based on
noisy observations of the system’'s state are oblained
in the next section.

‘A semi-Markov (SM) chain [Hl, H2Z, -RI] 1§
characterized by a fixed malrix of transition
probabilities [pll and a matrix of sojourn

time probability dencgity funclions

“ij("i”? which are functions of Lhe
current state I as well 3as the destination state
of the transition. Iin 3 SM chain first the
destinatior of Lhe jump is chosen according to

lpi,) and then the time after which the jump

takes place (i.e., the sojourn Lime} is chosen
according to (f;,(rill. In this model the
process can undergo 3 virteal transition (i.e, jump
“in place” if j=i]; however, in this case, the
sojourn time counting is still restarted even though
the system has been in state i for some time

3. Sejourn Time- Probability Mass Functions and
Conditional Transition Probabilities

The process M(k), X=0,..., which represents
the system model, can exist in one of r
possible states. The currentl probabilities of
transition for the STOM process (chain} are funclions
of the sojourn time 7 and are defined as

p’(rl = P(M(K)=jIM(k~ ~1)=i,7,(k-1)=7)

where 7{k-1] is the sojourn time in state i at
time k-1. It is assumed that at k=0 the sojourn
time (in whatever state the system model is} is
7=x{ . Thus the values r can take are from |
to the maximum, which at time k-{ is then K

Let z{i} be a-noisy measurement of Lhe state of
the dynamic system whose model undergoes Lransitions

(3.1)

according to the above described STOM process Based
on the available information
Z"‘(Z(K))L, the oprobability of the
model- process being in state -i, denoted as
ui(k) , is defined as

pAKIZP(MIK)=HZYY  ietr (3.2)

The conditional pmf of the sojourn Lime in stale
M(K)=i baseg on the available Information 2% at
time k is

g(7) & P{r(K)xTIM(KI=i.Z')} = P(7,(KI=7IM(K]=i, Y

= P{MIk=1)=i,...,Mk-7+1) =] M(k~ iKY (3.3)
where the perfect knowledge -of the state HM(k]
allows one to go down Lo one index less in the

conditioning, Il.e. Z'.
Following (3.1) the. conditional probability of
transition from § to j at time-k-1 given the

observations Z*' js, in terms of {3 3],
Byjlk= n P(MEK)=JiH{k-1)x1,2""")

= z PMIKk)=JIM(k=1)=i,7,(k~1j=7,2*"")
111
P{7,(k=1) =T [H{k=1)=[,2"")
|13
= 2 0,01 g7}
13}
Note that Lhe argument of p,j.

(3.5}
defined In

given-hy the following expressions

N
e e = e T

{3.1) is the sojourn time while the -argument of
f’u defined: above (s the current dbme

The corditional probability mass funclipfi (3.3)
of the scjourr time 7 in stater £ at-time k s

Ag;‘(ll = - —(-~,- biix.) 136)
. - l s ¢ (k-m
gi(Si:s : 'a“'fs) b(k,s) JFW b.tk,.m) A
522, .k (3.7)
\ . L) u;!k-mi K (3.8)
gilkel) = I‘[‘ Y] b;(k.m) .
Expressions (3.6]-(3.8) are proven by induction in
fMial. The rotations a, and -b used above are 2
defined below
The probability that the process will stay s
time steps-in the same state | as it is at time
k-s is. conditloned on the informaticn at k-s,
given by Lthe exgression
b (k.s) 2 P(M(K)=i.. HlKk-set)=1M(k-5)=1,2"")
t=sel negey
= % T o tid g tnl s=luuk (3:91
Al jio ] i
Conditioned on the available information
7' at Lime k-s, the joint probability of
the process residing in the same state 1 for the

next s Lime steps is denoted as

3 (K.$)AP (M(K)=i,. Mik-s+1)=i17"%)

éP(H(kl=i, Hlk-s+1)=tM(k-5)=j. 2" *IP{H(k-5)=j2*")
&

b;(k.s)u (k=s) §P(M[k)=i.. N

M(k-s+1)=ilt{k=5)=],2""%)

-u'lk-s)
= by(k,s) u(k-s)
. s r'i' P(H{K)=i, . M{k=so1)=ilM(K-5)= )7, k-5)=n,2*"")
EA n:t
k= -
8, ’(n)lu,(k s)

= b;(k.s] U.(k-sl
“gel

.2 ki p (n)p (1)p.(2)..p [S~1, ,,"‘(nl]u,(k-s)

yi nsl »n 1" 1 i1
= bik.s) plk-s)

T k=sel s-1

o3 [ S oo (n)]] p.[l)af""(nl:] p (k-s)

i PR R P O }

s=1,...K [3.10)

4. The state estimation algorithm

As indicated in Sec. {, the optimal estimator for
linear systems wilth Markov model jumps requires an-
exponentially increasing memory. Among the
suboptimal approaches discussed, it appears that the
IMM is the most cost-effective in implementation
[B4]. [n view of this, the state estimation for a
linear system with sojourn-time-dependent transition
probabilities Is developed in the sequel based on the
IMM approach.

In this approach, at time k the state
estimation is computed under each possible medel
hypothesis using r filters (for the r possible
models), with each filter using a different
combination of the previous model~conditioned
estimates. Each model transition probability (s a
known function of -the sojourn-time given by (3-1]..
€ach model has 3 sojourn time 7k} In state i
which Is, however, not -known. The filter has access

only to the observations from which the conditional
pmf of the sojourn time (3.6)~(3.8) can be obtalined;
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this in turn is-to be used in calculation of the
condltional transition probabvilities (3.5).

To find the conditional pdf of the state of the
dynamic system descrlbec‘ by (2.1)-(2.3) the total
probabitity lheorem is used as follows:

pIx(K)7M = Z pIx(K)IM(K)=j,2(k),2'] P(MIK)=jIZY)

- me(kun(x) «,z(k),2*") u (k] (4.1}
j

i.e., r [fiiters runnlng in -paratlel, The
model-conditioned posterior pdf of the state, can be
rewritlen as (with the Irrelevant conditioning on
2! in the numerator omitted)
plxikIiM k) =f,z(k}, 27"
LU X o) ezt (1.2)
* Ptk =12 )
reflecting one cycle of Lhe stale estimation filter
matched to model |- starting with the prior, which
is tht last term above. The total probablhly
theores is -now applied to-this prior, yie.ding
plx(kMM{kI=gZ)

S plx(KI MK H(Kk=1) =1, 2 TP (MR- ) =ilH(K) 212"
Y

« 3 pytRNRIKI M- D28,2) u(k=tlk=1) (1.3)
izl
where
uilk) 2 P{M(K)=jIZ") (1.4)
3ad
1wy (k=tlk-1) & P(H(k~ “1)=ilM(k)=j,2* " (4.5)

Note that Eq (4.3) represents 3-Gaussian mixture
under the typlical Gaussian assumptions on the noise
terms in Egs. (2.!) and (2.2). This mixture is then
approximated by a single moment-matched Gaussian,.

‘Therefore it follows that the input to the filter
matched to model 1§, jel..r, is obtained from an
interaction. of these r Tfilters. This interaction
consists of the mixing of the estimates

%'(k-tlk~1) according to the weightings
{probabilitles) u"j(k-llk-ll. The

evaluation of the probabilities {4.4) and (4.5} in
-the STOM situation, are the key results needed
to obtaln a recursive state estimation algorithm for
this type of model switching. These probagbilities are
shown helow to follow from the resuilts in Section 3.

Fig. -4.1 describes the resulting Interacting
Hultiple Hodel (I1MM} algorithm, which consists of r
interacting fliters operating in paratlel, The
mixing is done at the input of Lhe filters with the
probabllities, detalled later in (4.7}, conditioned
on AN

One cycle of the algoritim consists of the
following:

] Starting with the model-conditioned estimate
i"(k-llk-l). with associated covariance
P'(k-1lk-1}, one computes the mixed initial
condition for the filter matched to M(k)=j according
to (4.3) as follows

N r
K(k-1lk-1) = 5 R(k-tlk=th (k-the-1)
=1
From {4.5)
iy fk=tlk=1) « Eljp(mk)-iln(k-l)-1,2“‘)p¢mx-1;‘ilz“‘)

(4.6).

= L5 (k- -
£ Bylk=1) u(k-1) (4.7)

-

‘This is the key step of the IMM that yields an
algorithm with fixed (and modest) computational
requirements: using r filters it ylelds performance
comparable to the Generalized Pseudo Bayesian
algorithm with r? filters (B4].
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where the notations from (4.4) and (3.5) were used
and

%'(k-11k=1) 2E[x(k-1)IMlk-1)=1,2*"" (4.8)
is the model~conditloned state estimale at time k-i,
The expression of 6;* for Lthe STOM case

using terms involving sojourn time probabilities is

the one obtained In (3.5). The covariance
corresponding to (4.6) is

PU(k-1]Kk~1]) = iu (k-llk-xl(b'(k-x!k-u

. R (k= llk 1) ‘°‘(k tik-1))
(R (k-11x-1]-R0(K=11K=1)]") (4.9)

The estimate (4.6) and covariance (4.9) are used
as mputl to a standard Kalman filter matched lo
M(k)=j to yield the model-conditioned estimate
%(klk) and its covariance Pi{klk).

The likelihood functions corresponding Lo the r
filters are compuled as

AJKY = -plz(k)IM(k)=j,2*)

= plzik)IM(k)=j,2%(k-11k-1),0%Kk~1Ik-1)]  (4.10)
where the past data have been replaced by (4.6) and
(4.8) according to the key step of the-IMM, The
model probabilitles (4.4) are updated as follows:

u (k) = P(H(K)= =12 = La, (k)Z Gk k=1 i
where the conditional Lransmon probablhues. :
51,. are as given in [(4.8).

£gs. {4.7) and {4.11) in combination wit»
;')U are the key results that make possible

the state estimation for a system with sojourn-time-
dependent model transitions.

Finally, for output only, Lhe latest state R
estimate and covariance are obtained according Lo

Eqs. {4.1) and (4.3) as
R(kik) = zl 2k (k) (4.12)
l:
P(kIk) = Z‘ u.(kl(P’(klkl
I
o [R(KIK) - R(KIIRAKIK) - R(KIK)))  (4.13)

5. Simulation Results

The algorithm developed in Sec. 4 using the
sojourn time pmi obtained in Sec. 3 is used to
estimate the state of the system. In the first
example the resulls of this STDM-based IMM estimation
scheme are compared with results obtalned from an [MM
algorithm based upon a Markov model transition
assumption. In the second example the STOM-based IMM
estimation scheme is compared to the
detection-estimation algorithm of [M9]. It is
assumed that an STDM process described In Sec. 2
governs the switching between models. In the
following T is the sampling period and k Is an
integer representing the number of sampling periods
since time zero.

Example |

The estimation of a controlled double integrator
system with process and measurement noises is
considered with a3 gain fallure. The two possible
models are glven by the following system equation

xi{Kke1) = r ‘ T ] x'(k)

[ ]u(k)o[”z:]v(kl 1,2 (5.1)

with measuremem equation

z(k) = (1 0] xi(k) + w(k) (5.2)
The models differ In the controi galn parameter b’
The process and measurement nolses are mutually
uncorrelated with zero ‘'mean and variances
given by

Elvik]) v(])] = 4:107% &, {5.3)
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and
Elw(k] wijl] = & (5.4)
The control gain paramelers were chosen to be b Y,
and b,
The transition pcobabilities p“(ﬂ and,
pyl7) defined in (3-1) are shown in Fig.
S-1, Note that p'.,.(rl. for itj, are given

by

Blr) = 1= p ). (5.5)

Thus we see that P, (r) is initially .5 and
rises rapidly to .99 and then decreases ltowards .i
which is Its steady state valug We also see that
02(1) has 3 value close to 1.0 for this range
of 1 and thus model state two is essentially an
absorbing state.

£igs. $~2 Lhrough 5-4 present Lhe resulls of
100 ‘Monte Carlo runs. The true system was initially
model 1 for every run and the model transitions
occurred according to Lhe probabilities of Fig. S-1.
For simplicity, since we are mainly interested in the
estimation of the state, and not in the control
strategy, we setl u{k)#3 for all k .

The Markov based IMM-used for comparison ulilized
the a priori average Lransition probabilities
ﬁli(rl. obtained by taking the expected

value of the transition probabilities shown in
Fig. 5-1. In-other words, the conditional
probability p from {3.5) is replaced by the a
priori lunconditional) p given below in [(5.7).

The probability of having a sojourn time 7,

equal to 7 is the probability that model i s in
effect for 71-1 steps, and then a Lransition occurs
3t step 71,
-1
P(r=7) = [H p U ][1 - o (1] (5.6
Thus we get
e
p.o= T plr) P(r=7) =12 {5.7a}
11} 121 n
and
p,=1-7, {5.7b)

figs. 5-2 and 5-3’ are plots of the RMS error in
x (k] and x,(k] respectively. From Fig. 5-2 we
can see that the STDM-based IMM estimator improves
the RMS -error in  x,(k) by as much as 20 percent,
From Fig. 5-3 we see Lhal the RMS error in x,(k}
of the STOM-based IMM estimator is as low as one
third the error of the Markov-based IMM scheme.
the mean-square error Improved by aa order of
magnitude.

Fig. S-4 is a plot of the average model
probability error. This is the error in the filter’'s
determination of the correct system model.

Typical running times for the STOM-based IMM vs.
the Markov-based IMM are in the ratlo of 3:1. The
length of the time-span over which the sojourn time
pmf is computed can be truncated - Il becomes
negligible after 15 steps. This keeps wilhin
reasonable limits the additional czlculations of the
STOM-based fllter and prevents any growth of the
computational or memory requirements.

Example 2

In this example we make a comparison between the
detection-estimation algorithm, (DEA), based
semi-Markov estimator of {M9) with the STOM<=based MM
estimator of this paper. For Lhis purpose the system ~
and the semi-Markov model switching process
attributes are as in [M9] example 3, and are repeated
here for ease of referance.

The -model process M(k} §s taken as 3 semi-Harkov
chain. The scalar system Is described by [M9]

X(ke1) = 1,04 x(k) + v(k}

z{k} = x(k]) + D(M(k))w(k), X=0,1,2,...

where r = 3 models, 0{1)=100, D(2)=10, and 0{3)=1.

Thus

(5.8)

e

— e
e A oo
e e

o e b i =

Here (vik}} and (w(k)} are mutually independent
zero-mean Gaussian-white noise: sequences with
covariances Q=0.1 and R=1.0, respectlvely The
initial conditions are x(0)~N{30,400), P{H(0)=1)=1/3
for i=1,2,3. For the real system x(0}=1 in every
simulation. The process M(k) is modeled by a
semi-Markov chain with the imbedded Markov chain
transitlon probabilitles given hyp”-pn-p”-ﬂ. pu-O.?.
pu-=0.3. pzl-O;B, p2?f0.4.pn-0.3, and p32-0.7. The sojourn
time probability mass funclions pI('r) are assumed
Lo be

pl(‘rl = a,exp(-17-3l1

pyl1l = aexpl-17-6l]

pa(r) = ayexp(-17-8l} (5.9}
for 120 wilh a, such that

T ir)=t, i=1,2,3. {5.10)
220 !

The results of 50 Monte Cari0 runs average are
shown in Figs. -5, §-6. In Fig. 5~5 we compacre the
rms state errors of the two filter DEA based
semi-Markov eslimator of [M9] with our two filter GPB
tased semi-Markov approach, and with the GPB
estimator using 3 filters. Note that the values for
the DEA estimator are two-time-step smoothed values
(see-(M9]), Fig. 7, M=2 most likely historfes
retained) whereas the values for the STDM-IMM
estimator are filtered values, We can see thal our
estimator with two filters-is stable 3s opposed to
the unstable two-filter DEA methcd.

The plot of the 3 filter STOM-IMM estimalor shown
in Fig. 5-5 is given so that one can compare the
improvement ohtainable by adding an extra filter to
this approach. We see that the long term trend is
for the 3 filter STOM-IMM Lo give 3 smaller rms error
than the version with 2 filters. »

-‘In Fig. 5-6 we compare the probability of error
obtained using a 4 filter DEA estimator versus the 3
filter STOM-1MM estimator. Both curves were obtained
from a filtering operation (see (MS] Fig. 10, N=0).

We can see that the present estimator gives a much
clearer indication of the correct system structure
and hence is preferable for failure detection,

6. Conclusion

Ve have applied the recursive state estimation
algorithm for dynamic systems, whose state model
experiences jumps according to a sojourn-time-
dependent Markov, STOM, chain, to the problem of
failure detection. The algorithm, which -is- of the IHM
type, uses noisy state observalions and the
calculations are done In _the following order:

1. Probability of each-mode) being the current
-model

2. Sojoura time -pmf in the current model

3. Hodel-conditioned state vector estimates and
covariances

4. Overall: state vector estimate-and -its-
covariance.

The first example simufated indicates that the
use of -the STOM~based IMM-estimator can give a
substantial improvement in stats ﬂs'imd'ion over g
Markov-based IMM. The latter relles on the-.a prlari
average-transition probabllmes while the former
uses conditional’ transition probabllitles cBtained
from the conditiongl sojourn time distrisution. This
example shows that the: STOM-~based ss.heme is
substantially better than the Harkov-—baszd scheme .in
determining the true system model, whlcﬂ iz
beneficial for failure detectlon schemes.

The second -example simulated shows that, For the
particular system under consideration the STOM«b based




e

IMM estimator, which is an hypothesis merging
technique, compares favorably in terms of the
prohabllity of error, to the detection-estimation
algorithm based estimator, which discsrds the
unilkely parameter histdry hypothesis.
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Distributed Adaptive Estimation with
Probabilistic Data Association*

K. C. CHANGt and Y. BAR-SHALOM}§

A fusion algorithm for target state estimation under cluttered environment

with uncertain measurement origins and uncertain system models in a

distributed manner can be applied for tracking a maneuvering target-in a
cluttered and low detection environment

Key Words—Distributed estimation; multiple model; target tracking; probabilistic data association;

Bayesian methods; distributed sensor networks.

Abstract—The probabilistic data association filter (PDAF)
estimates the state of a target in a cluttered environment.
This suboptimal Bayesian approach assumes that the exact
target and measurement models are known, However, in
most practical applications, there are difficulties in obtaining
an exact mathematical modetl of the physical process. In this
paper, the problem of estimating target states with uncertain
measurement origins and- uncertain system models in a
distributed manner is considered. First, a scheme is described
for local processing, then the fusion algorithm which
combines the local processed results into a global one is
derived. The' algorithm can be applied for tracking a
mancuvering target in a cluttered and low detection
environment with a distributed sensor network.

1. INTRODUCTION

THE MaJor difficulty in tracking a target with
switching models/parameters in a cluttered
environment is due to-the fundamental conflict
between the operations of model/parameter
identification and data association, since the
measurements with large innovations are con-
sidered as unlikely to have-originated from the
target of interest. In this paper, a multiple model
approach in conjunction with the probabilistic
data association (PDA) filter (Bar-Shalom and
Tse, 1975; Bar-Shalom, 1978) to track a target
with switching models using distributed sensors,
is presented.

* Received 23 February 1988; revised 18 August 1988;
received in final form 17 September 1988. The original
version of this paper was presented at the 10th IFAC World
Congress which-was held in Munich, F.R.G., during July
1987. The Published-Proceedings of this IFAC meeting may
be ordered from: Pergamon Press plc, Headington Hill Hall,
Oxford OX30BW, U.K. This paper was recommended for
publication in revised form by Associate Editor P. M. G.
Ferreira Guimaraes under the direction of Editor H.
Kwakernaak.
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Mountain View, CA 94043-1230, U.S.A. All correspondence
to this address.

$U-157, ESE Department, University of Connecticut,
Storrs, CT 06268, U.S.A.

§ Supported by AFOSR Grant 84-0112.

Several approaches have been proposed to
perform the state estimation of a system together
with identification of each model (out of a finite
set) in- a centralized framework. One of the
significant schemes is the so-called- generalized
pseudo Bayes (GPB) method (Tugnait, 1982;
Chang and Athans, 1978) and the other is the
interacting multiple model (IMM) algorithm
(Blom, 1984; Blom and Bar-Shalom, 1988). The
general structure of these algorithms consists of
a bank of filters for the state cooperating with a
filter for the parameters. A GPB algorithm of
order n (GPBn) needs N" filters in its bank
(Tugnait, 1982). The IMM algorithm performs
nearly as well as the GPB2 method with notably
less computation, namely, at the cost of GPB1
(Blom and Bar-Shalom, 1988). A distributed
estimation scheme with uncertain models has
also been derived (Chang and Bar-Shalom,
1987). However, in all the above approaches, a
perfect data association was assumed, i.e. there
is no uncertainty in measurement origins.

To take into account the data association
pioblem, an adaptive PDA algorithm was
presented in Gauvrit (1984) for tracking in a
cluttered environment with unknown noise

statistics. This algorithm identifies on line the

unknown variances of the process and measure-
ment noises but uses an earlier (static) multiple
model approach (Bar-Shalom, 1988). In this
paper, a distributed estimation problem which
takes into account both model and measurement
origin uncertainties will be derived. To handle
the model uncertainty, a more general formu-
lation with dynamic multiple models described by

‘Markovian parameters will be adopted. These

parameters mdy switch within a finite set of
values which represent different system models.
To take care of the missing and false
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measurements, the PDA scheme will be
employed. The probabilities of associating
measurements to a target given different system
models will be computed and used to weight the
combination of state estimates.

The problem is formulated in Section 2. A
centralized algorithm which combines the IMM
algorithm and the PDA filter, resulting in the
MMPDA (multiple model PDA) filter, for local
processing will be described in Section 3.* Then
the fusion algorithm which combines the lccal
processed results from multiple sensors into a
global one will be presented in Section 4.

The algorithm can be applied for tracking a
maneuvering target in a cluttered and low
detection environment with a distributed sensor
network (DSN).

2. PROBLEM FORMULATION

Let us consider the two-node scenario similar
to that given in Chang ef-al. (1986), where each
node processes the local measurements from its
own sensor and sends the local estimates to the
fusion processor periodically. The fusion pro-
cessor then sends back the processed results
after each communication time.

The dynamics of the target in track are
modeled as

x(k)=flx(k 1), M(k), v[M(k), k=1]] (1)

where x(k) is the state vector, u[M(k), k — 1]
the process noise vector and M(k) the system
model from time k — 1 to k. Assume the random
model process M(k) is Markov and it can only
take values from a finite set M, which contains»
distinct models,t i.e.

M= {M/}lr-l 2

The measurement system.is modeled as follows.
If the measurement originates from the target in
track, then

2'(k) = h'[x(k), M(K)] + wiM(k), k] (3)

where z/(k) is the measurement vector from
sensor i and w[M(k), k] is the corresponding
measurement noise vector. The two noise
sequences are mutually independent and inde-
pendent of the initial state.

* The MMPDA algorithm has been implemented in the

. interactive software MULTIDAT (Bar-Shalom, 1987, 1988).

1The models can have states of different dimension. In
this case, the lower dimension state vectors are augmented

* with suitable components that are zero w.p.1,-to make them

compatible. This is elaborated on in Section 5.

+Such a rule, also called “gating”, considers only the
measurements within some distance from the predicted
measurements (for details, see, e¢.g. Bar-Shalom and
Fortmann (1988)).

As in the PDA filter, it is assumed that a rule
of validation of the candidate measurementss is
availabie such that it guarantees that the current
return will be retained with a given probability.
For each sensor, denote the validated measure-
ments at time k as

Zi(k) = (z!(k)}H, )

where mj is the number of validated measure-
ments of sensor i at time &, and

YARIVA() % )

The local model-conditioned state pdfs at
sensor {-are

plx(k} | Mi(k), Z%, Y*),
i=1,2; j=1,...,r (6)
with the corresponding model probabilities
P(My(k) | Z%, Y™,

i=1,2; j=1,...,r (7)
where ' ) '
Yik = {(Y'(l), ..., Yi%)} 8)

and. Y!(k) denotes the information received by
node i during the sampling period ending at time
k, which is defined as the fusion result (namely,
global conditional pdf) up to time k — 1. :

Assuming lossless communication and that the
information communicated is the sufficient
statistics, i.e. the information contained in Y** is
equivalent to the information in Z“*~', then we
have the following equality:

px(k) | Z*=!, Yy = p(x(k) | Z#*~1, Z+*-Y)
=p(x(k) | Z*") ©)

where i represents all sensors other than sensor i
and Z*={Z()}f.;, where Z(I) represents
measurements from all sensors at time /.

Given the above models, the question now is
how the global conditional pdf can be con-
structed by fusing together the local ones.
Specifically, we shall investigate what is the
necessary and sufficient information that has to
be transmitted- between nodes. The derivations
will ‘be carried out for arbitrary pdfs; however,
the simulations assume linear models with
Gaussian random variables, in which case the
state’s model-conditioned pdf (6) is Gaussian
and the overall conditional pdf of the state is a
Gaussian mixture (Bar-Shalom, 1988).

3. CENTRALIZED ALGORITHM FOR LOCAL
PROCESSING

For each local node, the centralized algor-
ithm where all measurements are sent to and
processed with one processor is described below.
The goal is to compute the conditional state
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distribution given the local accumulated measure-
ments. With only model uncertainty, the local
conditional pdf at sensor i can be obtained as

plx(k) | Z¥, Y*¥)
=2 plx(k) | Mi(k), Z+, Y*4)

J=1

X P{M;(k) | Z¥%, Y**}. (10)
When the additional measurement origin uncer-
tainties are present, the above equation becomes

plx(k) | 2, YH)

=3 {5 pet | 4001, 03, 224, ¥4

j=1

x P(6L| My(k), Z+%, Y"‘}}
x P{My(k) | Z", Y**} (1)

where 8} is the event that zj(k) is the correct
measurement and 65 denotes no  correct
measurement.

The first term on the right-hand side of

equation (11) is the standard PDA filter based
on model M;, where for each 6,

plx(k) | M(k) 0f, ZH, YKy

=mp(z'(k) | x(k),
M(k), ez, Zi.k—l' Yi.k)
X p(x(k)] Mi(k), Z, Y%y (12)

where 0}, has been omitted in the last term above
(since it is irrelevant) and

el 6}
= [p@®) | 200, k), 0, 2, Yo%)
X pGa(k) | M(1; 2, ¥) (k)
=p(Z/0) | (83, 0, 247, Y. (13)

Using- Bayes’ rule, the second term on the
right-hand side ofequation-(11) is

P{6}] M(k), 2%, V)
P(ZikY | M), 8}, Z5, YR\ P (6L | My(k),
. Zi*=1 Y“‘}p(M(k), zlk-—l y4)
p(Z'(k/lM;(l’). Zi iRy
Xp(M,(k) Zuk=1 yxk)
1
1[M(k)]P(Z‘(k) z }dl(k)‘ 91‘ Zuk=t Y, k)

X P(6}] M(k), Z+1, Y'*)
1
" m]

Cl[M (k) 6, ]
X P{6| Mi(k), Z"*~1, Y**}  (14)

where

coM(k)] = E ci{My(k), 6i]

xP(B | Mi(k), Z+*-1, Y}
=p(Z'(k) | My(k), 2", YH5). (15)

In equation (13), the joint measurement density
is (see, e.g. Bar-Shalom (1988))

p(Z' (k) | Mi(k), 8}, ZH~", Y
mi
= ﬂ p(zi(k) | M(K), 6}, ZH+~1, Y*)

Ve if =0
{ Vimtiplzitk) | Mi(k)] otherwise (16)

where V, is the volume of the validation region,
because our assumption on the incorrect
measurements being uniformly distributed,*
independent from each other and from the
correct measurement, and

plzi(k) | My(k)]
= P3'p(zi(k) | Mi(k), 6}, 2", Y™) (17)

is the truncated density which is zero outside the
validation region where P is the probability that
the correct return will lie in the validation
region.

In equation (14), P{@} | M;(k), Z**~', Y**} is
the prior probability of the event 6, based on
model M; to be correct at time k. By choosing a
large enough validation threshold, this prob-
ability becomes independent of M;(k) and is
assumed to be the same for all 6] unless target
signature information can be used. If no such
information is available, then

P(6,| Mi(k), 2%, Y}

1~ ngo if 11=0
=\ fefo
mk

(18)

otherwise

where P, is the probability that the correct
return will be. detected.

For each model M;(k) and event. 6}, equation
(12) is the standard filtering equation. In that
equation, by using the IMM approach (Blom
and Bar-Shalom, 1988), the extrapolated pdf is
obtained by combining the extrapolations of the

* For more elaborate models se¢ Bar-Shalom (1988).

e
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prior pdfs (independent of the event 6})
p(x(k) | My(k), Z4", Y4

= 3, p(<C0) | M 00), Mk - 1), 2571, ¥4
X P(Mk = 1) | M(0), 24", ¥4y
L pe() | M), Mk = 1), 2471, v

X P{M;(k), My(k — 1) | Z"*~1, Y*k}
P{Mj(k) | Z"*=1, Y5}

1 r
=] & PO 140,
Mik - 1), Z1, Y*)
< P{M;(k) | M,(k - 1)}
x P(M(k 1) | Z*71, Y4y )

where p(x(k) | My(k), Mi(k — 1), ZM1, YKy s
the extrapolation of the conditional state pdf
given Z**~! and- Y** from model M;(k ~1) to
model M;(k) and

cS[M;(k)]) = P{M;(k) | Z**, Y*¥}
= 3 PM(0) | Mk - 1)
XP{M(k=1)| 2", Y}, (20)

The last term of equation (11) is the a
posteriori model probability, which is obtained
as

P{M(k) lzl,k—l‘ Yi.k}
=21§p<2"(k> | Mytk), ZH4, Y+
XP{M](k) l Zi'k-l, Yi.k}
= Zell (A (0] )

~ Ay M
T (kedfket) .' (ketf o1} P, (k1fks)

oo |

L INTERACTION (MIXING) jo———-—
. 1 % l MIXING (%)
'

PDA POA (19 X
FLTER FLTER (19
M1 (k) M2 ()
qo_ sy - 1 MooeL PROBABLTY | ()
. UPDATE
(10)
STATE
ESTMATE
CCLIINATION
~ ~ M NT
X, X, 00 A x oM
Fig. 1. Centralized MMPDA algorithm with r=2 at
sensor.i,

where
ci= gl cs[M;(k))es[My(k)]

=p(ZH) | ZH v (22)

and c5[M;(k)] and c5[M;(k)] have been obtained
in equations (15) and (20), respectively.
Equations (12)-(21) complete a recursive cycle
of the local processing. A flow diagram of .the
local MMPDA algorithm is given in Fig. 1. The
flow of data is represented by the model-
conditioned means £; and the model prob-
abilities P,

4. FUSION ALGORITHM
With the local conditional pdfs obtained in
Section 3, we can now derive the fusion
algorithm to obtain global pdf. Similar to
equations (10) and (11), the global conditional
pdf can be obtained as

p(x(k)| Z*)
= le plx(k) | Mitk), Z*)P{Mk) | Z*}

=3 {> 3 pet0) | M0, 03, 6, 29
j=1 Lol &

x {8}, 6% M(k), 24 }P{M(k) | 25).
(23)

Assuming measurements from different sensors
are independent given the target state, then the
first term on the right-hand side of equation (23)
can be obtained as

px(k) | Mi(k), 6}, 63, Z*)
- L
" c[M(k), 6}, 67]
X p(Z(k) | x(k), My(k), 8}, 6%, Z*"")
% p(x(k) | M(k), 6}, 6%, Z*™")
1
" c[M(k), 6}, 6]

2
X ’I_Il [p(Zi(k) | x(k), My(k), 61, 2]

x p(x(k) | Mi(k), Z¥")
1
T c[Mj(k), 81, 6%]

1L 1@k | x(K), M(0), 6}, 2
X p(a(k) | M k), 24
PG O | Bi6), 2

X

(24)




- ————

st o etA e

where

c[M;(K), 6}, 6]
r = [ @ 6, k), 61, 63, 2+

x p(x(k).| Mi(k), 6}, 6%, Z*~1) dx(k)
=p(Z (k)| Mi(k), 6}, 91,, AR (25)

is the normalization constant.
Since from equations (12) and (9)

plx(k) | Mi(k), 6;, ZH, Y**)
i NN S
ciMy(k), 6;]
X p(Z'(k) | x(k), My(k), 6}, Z*"")
X pr(k) | My(k), Z7Y). (26)

Equation (24) can be rewritten as

plx(k) | M(k), 6}, 63, Z*)
1
" c[Mj(k), 6}, 63

e e e st e b Noh DAk e

1 (eifp), 0]

X p(x(k) | My(k), 6}, Z'%, Y9y
plx(k)| My(k), Z¥°)

1
CO[M(k) 9(,) 9 ]

;I-Tlp(x(k) I A4/(")' 62, Zi'k, Yi'k)

— 27
PG [ M(8), 27 @
where the denominator can be derived-as

) peny 2R, M) | 247
, PO MO, 2= it 12

i £ pe() [ ), MGk~ 1), 2+
| ~ XP{MK) [ Mtk = D}P{Mi(k ~ 1) | 2*7')
L P | M- D}P 4Gk - 1| 257

28)
and
1 2
cl(6), 64, 7] = LR O, Oi]
il:-Ix Ci[h{’(k)’ 0;:]
11 (k) | MR), 6}, 20, ¥4y
=f PG o) [ M), 2y k)
(29)

is the new normalization constant.

B e e T USRS
[ 3
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Assuming 6}, and 67, are independent given
the target state, then similarly to Chang et al.
(1986), the second term of equation (23) can be
obtained as

P{8, 6;, l My(k), Z*)
c.[M ()] f p(Bi,. 07, Z(k) | x(K), My(k),

Zp(x(k) | My(k), Z47") dx (k)
1
~aM(k)]

1 p(e(o), 01, 26| w06), 247
“J PR30, 77

. d k=1
c[M,(k)]‘_HlP{o W M(k), Zi(k), 257"

1 p(sk) | M08), 8, Z/CR), 247
xJ PG k) [ M (K), 25

dx(k)

dx (k)
(30)
where
el Mi(k)] = p(Z(k) | Mi(k), Z¥°")  (31)

and
(b)) =——L4E)

1 p(Z'(k) | My(k), 247

0 2

1 clfa k)]

are normalization constants, where c{M;(k)]
was given in equation (15).

Since the information contained in Z*~! is the
same as that in {Z"*~!, Y**} (see equation (9)
for details), equation (30) can be written as

P{6}, 6% | M(k), Z*}
,I_ZII P(6}| My(k), Z', Y**)
) M (k)]
,lel p(x(k) | Mi(k), 6}, Z"*, Y*¥)
J| PEOTH, 77
cz[M,(k)]HP{e H M), 244, Y
x = (My(k), 65, 67]. (33)

dx(k)

From equations (27) and (33), equation (23) can




be written as-

N
| P12 = 2 v
| i [p(6) | 406, 0}, 24, ¥
X X P(6}| Mi(k), Z%, Y}
| o o plx(k) | M(k), Z7")
z x P{M(k)| Z¥). (34)
The last term of equation (34) is the global a
] posteriori model probabilitiecs. With equations
- (31) and (32) we have
' | P{My(k)| Z*}
=2p(20) | M), 24P U) | 22
=M@ (M) | 2+7)
2
= [eaMon [T i) Jpon i | 2471
=Cz[M}(k)]
g
T MNP0 | 2]
P(Mj(k) | Z*"}
' =02[Mi(k)]
z
1 (p(Z(0)] M8, 247, ¥4
X P{M;(k)| Z*~"}]
X
P{M;(k)| 2*~"}
_Cz[Miik)]
@
i i;i]1 (P{M(k) | Zi(k), 251}
v N X p(Z'(k) | Z¥°Y)]
i P{M(k)| 2*~")
=02[M((k)]
; g

1L P | 2% ¥4)p(2 ) | 247

X
| P(M k)| 2*"}
4 2
nre I.k, ik
{ =Cz[ﬁ{l’(,f)],r_ll {M/(k)lzk-ly ) o
¢ P(Mi(k) | 2"}

where the denominator is the same as that of
equation (28) and the normalization constants ¢
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and &' are

E=p(Z(k)| 2 (36)
and

c

n

~t

¢

fpw127Y i

37

4.1. QOverview of the fusion algorithnr

From the above, it follows that the giobal- &
posterfori pdf and model probabilities- are
obtained by combining (multiplying) the local a
pos.ériori pdfs and model probabilitics and
removing (dividing)-the common 4 priori pdf and-
model piobabilities. From equation (34), we-can
st that for each model, the conditional global

- pdf given that this model is-correct is obtained

by the sum of global fused pdfs given all possible
global event pairs 6}, 6. The overall global a
posteriori pdf is then obtained by the sum of
global pdfs of each model weighted by the global
a posteriori model probabilities. Equations (34)
and (35) represent the complete cycle of fusion
processing. From them it follows that the
information needed to be communicated from
local nodes to the fusion node consists of:

(a) the model probabilities; )

(b) the association event probabilities; and

(c) the-corresponding pdfs (mean and covari-
ance for Gaussian case).

A summary flow diagram of the fusion
algorithm with two models is given in Fig. 2. For

~ ~
k(k-llx-l! l:(l‘“k'“ P\ (ke dfked)
1 {18)
r INTERACTION [MIXING) _}"———“
” ~
0 x, ) MIXING I (28)
3
NODE 1 |l —
tocaL [ plaw (1)
FOAMM ?‘:(kmx P;(kl‘l) '
?&:DELZ 1 jon ) i P
A
- P (k)
POAMM I- ’:;(l(k)‘P; {xp) '
2oy | smare STATE
ESTIMATE ESTIMATE | {3)
FUSION FUSION (33)
M (k) M2 (K
0 61 MODEL PROBABILITY
0 FUSION
(23
STATE
ESTIMATE
COMBINATION
y a ,\l
';‘(ug) l’(iql() PI (%) x (K}

FiG. 2. Distributed MMPDA algorithm with r =2.




Distributed adaptive estimation 365

simplicity, only the mean of each pdf is shown in
the figure. References to the corresponding
equations are also given in the figure.

5. SIMULATION RESULTS

A ‘wo-dimensional single target tracking
problem will be considered. Two target dynamic
models will be assumed, one with (nearly)
constant velocity and the other with (nearly)
constant acceleration. The Markov transition
matrix of the models is known and given. The
initial target state estimate is given and the iniual
probabilities of the two target models are
assumed equal.

The target dynamic models with discretization
over time intervals of length T are

x(k)=F[MKk)]x(k-1)
+G[M(k)Ju(k - 1) (38)
where for model 1, the nearly constant velocity
model, the state is

x=[x %y yI (39)
and
1 T 0 0
01 0 0
F=
901 T (40)
10 0 0 1
(T2 0
T 0
G= 0 722 | (41)
0 T

The process noise v(k)=[v,, v,]’ representing
the acceleration during one period is a zero
mean Gaussian white noise vector with

covariance
% )
0 q 1Ly '

For models 2 (with acceleration), the state is

x=[x & &y y j (42)
and
(1 T T2 0 0 0 ]
01 T 00 O
|00 1 00 (z) (43)
00 0 1 T TY
00 0 01 T
00 0 00 1 R
T2 0
T 0
1 0
G= A (44)
0 T
. 0 1
AUT 2%:3-C

where the process noise v(k) representing here
the acceleration increment over one period is a
zero mean Gaussian white noise vector with

covariance
[qZ,x O ]
0 qay

Assuming only position measurements to be
available, then, for node i

2i(k) = Hix(k) + wi(k) (45)
where

;i [1L 00 0o

H"[o 0010 0] (46)

and w'(k) is a zero mean Gaussian white noise
vector with covariance

5 4]
0 r

To overcome the fact that one has different
state dimensions the lower dimension vector was
augmented with suitable zero components
(which then have mean and variance zero) to
make it compatible with the higher dimension
state.

With sampling interval T = 15, the true target
is simulated with constant velocity for the first
seven scans, then switches to constant acceler-
ation for the next seven scans, and finally returns
to constant velocity for another seven scans. The
initial target state is assumed to be [100m,
30ms™',0,100m, 15ms™', 0] and the acceler-
ation is assumed to be 5 and —5ms~? for the x
and y coordinates, respectively.

The variances of the process noise are taken as
G = g1,y =0.1 (ms™2)? for model 1, the nearly
constant velocity model, and g,,=g;,=
1.0(ms™%)? for model 2, the ncarly constant
acceleration model. The detection probabilities
for both sensors are equal to 0.67 and the false
alarm rates are 0.0001m™2 The standard
deviations of the measurement errors are
assumed to be V(10)m for both x and y
coordinates of the two sensors. The Markov
transition matrix for the model parameters is

assumed to be
[0.9 0.1]
0.1 0.9J

The initial state estimate is generated randomly
with mean the same as the true target state
and covariance matrix equal to

diag[100, 1,0.1, 100, 1,0.1].

Three -different configurations will .be tested.
First, each sensor will be simulated indepen-
dently using the MMPDA algorithm descrited in
Section 3. Second, a centralized processing with

o
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Trajectory window
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F1G. 3. Tracking results with sensor 1 only (one sample run).

measurements from both sensors will be
simulated using the same MMPDA algorithm.
Finally, the distributed case will be simulated. In
this case, the two nodes will communicate every
scan.* At each scan, each node will process its
own sensor measurements first, then send the

.local processed results to the fusion node. After

receiving the information from both local nodes,
the fusion node will use the fusion algorithm
derived in the previous section to construct the
global estimates and send the results back to

_eachlocal node.

Simulations were carried out with 50 Monte
Carlo runs. The results of one sample run are
shown in Figs 3~5. Figures 3 and 4 show the
estimated and true trajectories of the target with
sensors 1 and 2, respectively. Figure 5 shows the
results for the distributed case where the two
sensors interchanged their processed results. As
one can see, the single sensor processed results
have poor performance, and the target is lost in
both cases. Figure .6 shows the probability
trajectories of modei Z for the three cases as
calculated by the co‘respondmg state/model
estimators. As can.oe seen from the figures, in

* This is.totally equivalent to the centralized configuration
but hag the advantages of redundancy and reliability for a
DS¥ ‘systery. ‘This configuration- can also be used with a
lewer communication rate (Chang ef al., 1986).

both single sensor cases the algorithm fails to
detect clearly the switches of the target between
two models. The distributed algorithm not only
responds faster in detecting the first jump of the
target from the constant velocity mode to the
constant acceleration mode, but also successfully
detects the end of the acceleration. The
centralized algorithm, which is not shown in the
figures, performs exactly the same as the
distributed one.

The average performances for the three
configurations for 50 runs are given in Tabie 1.
The centralized and distributed algorithms
successfully track the target in 43 out of 50 runs
(“successful tracking” is defined when the
estimated target position is within 30m of the
true target position for the last three scans).
However, out of 50 runs, sensor 1 alone and
sensor 2 alone only track the target successfully
in 27 and 30 runs, respectively. The r.m.s.
position errors for those successful runs are also
calculated. Similarly, the centralized and distrib-
uted algorithms perform better than the single
sensor configurations. Note that the quality of
the estimation using two sensors in terms of
mean square error is significantly better than
using a single sensor.

The centralized case yields the upper bound of
the performance for the distributed configur-
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FiG. 4. Tracking results with sensor 2 only (one sample run). *
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F1G. 6. Model 2 probability trajectories. .

ation when the nodes communicate every scan.

The simulation shows that the results of

the distributed algorithm are the same as in the
centralized algorithm, which confirms the theor-
etical equivalence.

6. CONCLUSION

A recursive estimation algorithm that accounts
for the uncertainties of both measurement
origins and system models in a distributed
framework has been derived. The distributed
estimation technique has been adopted together
with the probabilistic data association (PDA)
filter in conjunction with the interactive multiple
model” (IMM) scheme. The resulting algorithm
can be applied to track a maneuvering target in a
cluttered environment with -distributed sensors.
Simulation results show the expected perform-

ance of the algorithm. With full communication
rate, the distributed case performs exactly the
same as the centralized case, which confirms the
theoretical equivalence, but has the advantages .
of increased reliability.
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Substituting these into (3.10), and using (E-2), we obtain

lim (1) =0. (3.13)
The estimation property (E-3), the uniform boundedness of y(¢) and u(¢),
and (2.5) the definition of £}, imply that

'lim e(t)=0.
Substituting this into (3.11) and, again, usirg (E-2) we obtain

lan: e, (1)=0. (3.14)
Since £(z~") is a stable polynomial, we can establish ii) by substituting
(3.13) and (3.14) into (3.12). VAVAY

Remark 3.1: The multirate sampling estimation algorithm in general
does not have the property that e(t)/{1 + {lé(¢ = 1)||*)'* € h, which is
required in the stability proof of conventional adaptive control algorithms.
However, we still prove the stability using property (E-3) and the rclution
letePl-z le()] for 4 s € < 4.

IV. CONCLUSIONS

In this note, we have developed a multirate sampling adaptive control
algorithm which allows a fast sampling rate of feedback control to be used
even if the computation of parameter estimate and controller-coefficient
may take a relatively long period of time.

The key idea to achieve this is to record the plant input and output prior
to the currently obtained estimate and use them to compute the coming
estimate and controller coefficients. Thus, the computation is not
dependent upon the inputs and outputs'appcaﬁng during_the updating
process. The closed- -loop system is shown to be stable.

Remark 4.1:

i) One may further extend the algorithm to consider &y = 4.y > n + m
+ d = A. In this case, a relation

l'e(l,_|+ﬂ+k)|SC| max 'e(l)l'{“Cz

UREI/SLL

{k < e, C; < 0, C; < ), can be used, and the algorithm orly needs to

compute e(t) for 4.y < ¢ < 4y + Abutnot forevery tingyy s t < ¢,
ii) Instead of the ARMA model, one can use §-model (8] in the

algomhm, which retaine the key features of the continuous-time model

.-and-allows a wide bandwidth MRAC system to be achieved.

iii) The multirate sampling adaptive control is presented for an indirect
MRAC system. However, the method covers a wide class of direct and
indirect adaptive control algorithms of certainty equivalence type such as
pole-assignment, LQ-optimai, etc.

iv) Various methods developed for improving adaptive control system
performance are applicable to the presented multirate sampling adaptive
algorithm, These methods include: a) various modifications of parameter
estimator for improving convergence rate; b) noise and- disturbance
filtering techniques; c) robustness fechniques with respect to disturbances
and unmodeled dynamics, such as deadzone, normalization, etc.; d)
internal model principle for deterministic disturbance rejection, ete.
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An Adaptive Dual Controller for a MIMO-ARMA
System

P. MOOKERJEE AND Y. BAR-SHALOM

Abstract—An sdaptive dual controller is presented here for & multiin-
put multioutput ARMA system, The plant has constant but unknown
parameters. The cautious controller with & one-step horizon and a new
dual controller with = two-step horizon are examined. In many instances,
the myoplc cautious controller is seen to {urn off and converges very
slowly, The dual controller modifies the cautious control design by
numerator and denominator correction (erms which depend upon the
sensitlvity functions of the expected future cost and avoids the turn-off
and slow convergence, Monte-Carlo comparisons based on parametric
and nonparametric statistical analysis Indicate the superiority of the duat
controller over the cautious controller.

I. INTRODUCTION

Multiinput multioutput systems with unknown parameters are encoun-
tered in many practical situations, and their contral poses a great
challenge to the stochastic control theory. It is not possible to obtain an
opumal solution for such systems because of the dnmcnstonahty involved
in the stochastic dynamic programming [6]. In such situations, emphasis
is on obtaining 2 suboptimal solution that incorporates the intrinsic
properties of the optimal solution. For stochastic systems, the control has
in general a dual effect [2], [11]: it affects the system’s state as well as the
future state and/or parameter uncertainty. Thus, the dual controller offers
significant improvement potential for the control of uncertain linear
plants. In multistage problems it *‘probes’’ the system to enhance real-
time identification of the system's parameters in order 1o increase the
accuracy of the subsequent control decisions and regulates the system at
the same time (41, (9].

Two classes of dual controllers exist presently [14]. In the first class
{101, [12], (18], the control minimizes a one-step ahead criterion
augmented by a second term which penalizes for poor identification, This
approach is simple but often requires tuning of some parameters. The
second class (developed for SISO systems in [3], [16], (17]) used the
stochastic dynamic programming equation and expands the future cost
about a nominal trajectory. Using first- and second-order Taylor series
expansions of the expected future cost about a nominal trajectory, dual
controllers for MIMO static systems are developed in [S] and [14]. A
second-order Taylor series expansion of the future expected cost is
performed about a nominal trajectory and a dual controller based on a
two-step horizon is developed in this note for 8 MIMO dynamic (ARMA)
model. The cautious {14), (16], [18] and the new dual controller are
applicd to a MIMO-ARMA system, Monte Carlo simulations; based on
parametric and_nonparametric statistical analysis, indicate that the dual
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-controller prevents .the turn-off phenomenon aid -slow convnrg,encc
pmalcnt with a"cabtious solution.

Section X ngs:s the problem formulation. The appmxxmatc dual.

coritroller with &. two-stép horizon’ for tie MIMO-system is derived in

‘Section IH, The confrol soluzxon is ebtaired by approkimating the solution

of the stochastic dynmuc pmgmmxmng equanen. A second-order Tﬂylor
series \.xpansnor of the cxpected futurs cost is. pcrfomcd}:bout a nominal
tr;ectory and- this lesds to a: dual t:omrol\soluuon in a:-closed form,
Followmg the derivations of the conhol!c . & summary of the algorithim is

given. Section TY describes the sxmmauon of the plant and compares the.

pcrfqnnances of the cautious and the dual -solutions. Sedtion.V. concluges
the note.

11, PROBLEM FORMULATION
The MIMO system to be controlled is described by
(kY= =Ay(k=1)+Bulk—1)+e(k) (1)
where
Efe(k)]=0; E[e(k)-e’ ()} = Wby, . @

Here y(k) is the output of the plant, u(k) is the input.to the plant, and
e(k) is the measurement noise.

- The parameter matrices 4 and B are unknown. This model describes
some industrial processes like an ore crushing plant, or a heat exchanger
(1]. The unknown elements of 4 and B comprise the parameter vector
(k) whose estimate at time k is 8(k) with covariance matrix P(k}. The
parameter vector is designated as

0(k) 8 (a;|b{lag|byl -«+ la, i)’ 3

where n is the dimension of the output vector y(k) and a; , b, are the ith
row of the matrices A and B, respectively. Assuming the parameters are
time-invariant, we have

8(k+ 1)=08(k). “
A mcasx.lrcmcnt matrix H(k) is defined as
H(k) 4 diag [—y'({c)lu’(k), =y R)lu’ k), -] )

where H(k) has n rows, and-y’(k), u’(k) are the measurement and
control vectors transposed.

With these dcﬁmtxons, the measurement model is
y(l§)=H(k—,1)9(k— 1} +e(k). ©)

The performance criterion to be minimized is J(0), i.e., the conditional
expected value of the cost C(0) from step 0 to N, denoted by

JO)=E{CO)|*}

knQ

N=-1
=E,[2 {y(k+1>-y,}'e<k){y<k+n-y,}u*] %

where Q(K) is the diagonai weighting matrix, /* is the cumufated
information at time X, and y, is the desired output.

. DUAL'CONTROL WITH A TWO-STEP HORIZON

First the controller is derived md then a summzry of the algorithm is
provided.

A dual control solution with a two-step horizon is obtained by
minimizing (2.7) with respect to the control u(0) for the multidimensional
plant (2.1)-(2.4). This is obtained by solving the general equation of
stochastic dy_nanﬁop'rogramming (31, {71, (8]

(k)= min E{C()+I* K+ DI} k=N=1, 2+, 1,0 (1)

where J*(k) is the optimal expected cost (0 go from k to N, C(k) is the

. s w—a a

cost to go from & to N, and I* is the cumulated information at time k when
.the control 1(k) is to be applied. The information I* is the set of all past
controls until time k-1 and outputs until time k.

Thus, for a two-siep horizon-we have-

";.n:"’:}i’,‘ E(C(k)*""/fu.nz":}

=min E{{y(k+ D=2} QU yk+ D=y} +T2, (o111

- @

where J¢,, ., is the optimal expected cost at the last step with one-step
-tiorizon and is obtained by minimization of Jk41,k+2, and Jee 14,2 IS the
costtogofromk + 1tok + 2.

The cautious control-at & + 1 with one-step horizon is given by
u(k+1)y=[E{B'Qlk+ 1)B|I**'}]-!
C E(B’QUk+ D){Ay(k+ D+ )51 )
The cost from-step k + Ltok + 2 s

ertka2=tr QA+ )W
+E[{Ay(k+1)+y.} Qlh+ D{dy(k+ 1) +}
+u'(k+1)B'Q(k+ D)Bu(k+1)=2{Ay(k+ D +y}’
- QK+ 1) Bu(k + D}I*+1] < (4)

and inserting (3).into (4) the optimal cost at the last step is

L
Jk&l.kd-z

=tr Q(k+1)W .
FE(Ap(k+1)+2,} QK+ D{Ap(k+ D +y )| 15+
- E({Ay(k+1)+7,} ' Q(k+ ) B[I**Y)
- (E{B'Qk+1)B|I**1}]!
- E(B’Qk+ D{Ay(k+ ) +p 1151 )

where E{-|I**1} is the conditional expectation given the available
information I%+1,

The unknown parameters will be chosen from the Gaussian family and
thus their estimate 8(k + 1) and associated error covariance P(k + 1) are
the sufficient statistic. The parameter vector estimate 8(k + 1) and the
associated covariance matrix P(k + 1) are obtained from a Kalman filter
according to

K(k+1)=P(k)H' (k) HK)PR)H' (k) + W]~ 6)

Bk + 1) =d(k) + K(k+ Dy (k+ 1) = HK)B(K)]
=3(k)+ K{k+ Dv(k+1) )]

P(k+1)=P(k) - P(k)H' (K)LH(K)P(K)H' (k) + W] H(K)P(K).  (8)

Here v(k + J ) is the innovation of the process.

From (5) itis clear that J¥, , ., is @ nonlinear function of the estimated
parameter vector 8(k + 1) and covariance P(k + 1). But the estimated
vector 8(k + 1) and the covarjance P(k + 1) are not known until the
control u(k) is applied.

A control u(k) with a two-step horizon can be cbtained from (2) if a
second-order Taylor series expansion of J¥, | ;2 is pcrformcd about a
suitable nominal trajectory. Here the nominal trajectory is defined by

" 1)a nominal parameter estimate §(k + 1) =8(k)
2) a'nominal control (k)
3) a nominal covariance P(k + 1) obtained by using 2(k)
4) a nominal measurement y(k + 1) obtained by using 2(k) and
d(k), te., P(k+ l)-{?(k)d(k).
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-Expansion of (5) about this nominal trajectory results in
_‘J,:“.k+2=f, +J; (k+ Diyk+ 1) —p(k+ 1))

43 (04 D =g+ D]yt DD+ D =K+ D)
+Jy (k+ 1Bk + 1)-3(k)]+% [Btk+1)-8(k))’

o Julk+ DBk + 1) ~8(k)]
+tr (Jp(k+ D{Pk+1)-Bk+1)}) ®

where J; is the zeroth-order term and the cost sensitivitics are

a"
Jik+)) & | =

“k+lke2
yi(k+1)

(10)
e
> a k+l,k+2
Inlk+1) & [ay‘(k-!-l)ay,(ki-l)] n
s
JHik+1) & [-ﬁ‘{,—(‘—ﬁ} (12)
az]c
A R k+1,k+2
Ju(k+1) 2 [a %+ 1) ,(k+i)] (3
aJ*
Jatk+1) 2 [a—,-,f,,-zkl':—"l;] . (14)

The above sensitivities are evaluated at 8(k), P(k + 1), and p(k + 1);
wd PY(k + 1) is-the ijth clement of the covariance matrix associated
vith the parameter estimates §;(k + 1) and §;(k + 1).

Under the Gaussian assumption for the zero mean noise

yk+ ) =gk + 1)~ N[, V]

where the conditional mean is

t5)

Jp=E{HK)O(k)+ ek +1)~A(K)B (k)| 1}
=[H(k)~A(K))8(k)

and the conditional covariance is

(16)

“V=Ef{ytk+ D=pk+ )=~ pHyk+ ) =pk+1)=u}'|1"]
=H(K)P(R)H' (k) + W. an

With the choice sf the.nominal pa_‘th as defined carlier and using (6),
(16}, and (17), the conditional expected value of (9) is

E{T3, ) 40 1Y S 24 T+ OE )~ GO

+—2- p'Jlk+ l);;+~2- te {J,(k+ 1) V]

+% tr {Ju(k+ D{P(k)-Pik+ 1)})

Ftr {(Fp(k+ {2+ 1) = F(k+ D} (18)

* The -above expected :future cost (18) is a function of the nominal
farameters multiplied by appropriate sensitivity functions J,(k + 1),
hyk + 13, Ju(k + 1), and Jp(k + 1). These sensitivities mtroducc the
dual effect into (2) which is then used to yzctd u(k). It must also be noted
that the covariance P(¥ + 1) is nonlinear in u(k) and is not yet known.
Hence, & second-order expansion of Pk + 1) is proposcd about a2
rominal control (k) andsa nominal covariance P(k + !) in order t0
obtain a (subopumal) dual solution up(k} in a closed form from (2).
This expansion is performed as follows:

Plk+ )Pk 1)+, ee) {Pg(u Diu(k) - 2(k))
W

+% fuk)-a(k)}’ PY (k+ l)fu(k)-ﬂ(k)]} (19) .

with the superscript here denoling the matrix element, e, the ith Cartesian
basis vector, and

U1y § FEUEED

8 P"(k+ n
du(k)

v
P Pok+). ETS)

hj=l e r

20

evaluated at P(k + 1) and 4(k) and r the number of unknown parameters.
Now a (subOpnmal) dual solution llp(k) with a two-step horizon can be
obtained from (2) using (18)-(20) and is given in closed form by

up(k)=(E{B' Q(k)B|1*}+ F1-'(E{B’' QX Ay (k) + ¥ I*} +/1 (21)

where the elements of the matrix 7 and those of the vector f are given by

| - 2

b [ eon-beon) e ]
1 l’ 3H(K) SH(k)
310 J,,(k+l)a wk) P“"(auk)) ]

1 AH(k) 5 3H (k)
3t [J,,(ku) ( k) (k))( 5 h) 9(k)) ]

i’j:ll—..'im

(22

and

__1{ oHk
fi=- (au(k)wk)) k1)

r

1 ol 3P(k+1)
-5t [{JP(/(H) 2J,.(/t+l)} k) ]
1 & 3P(k+1)
+ 2;,: tr [{JP(IH-I) J..(k+l)} m] (k)

1 & aH(k) aH(k)

23

and m is the dimension of the control vector, 1 is the ith element of the
control vector.

It is clear from (21) that this approximate dual solution up(k) is a
modification of the cautious solution by the cost sensitivity terms. The
cautious solution is (21) with F = Q0 and f = 0. These account for the dual
effect. The implementation-of this second-order dual solution is per- .
formed by the method described below.

Algorithm Summary:

1) Compute the sensitivity functions Jy(k + 1), Jptk + 1), J(k +
1), J,,(k + 1) for (i8) with §(k + 1) = 8(k) and the nominal values
a(k), Btk + 1), p(k + 1) defining the nominal path.

2) Search on (2) with (18) [with the sensitivity functions computed
above, starting with first nominal values 4(k), P(k + 1)] over u(k) to
obtain an improved nominal for which J},, is lower. This search is
dane by sclcctmg a first coarse grid. A grid search is necessary to avoid
locking in on a local minimum. Then another grid is chosen about the
latter control over a narrower interval and from a second search u/(k) is
obtained.

3) Using u’(k) compute the covariance ssnsitivities P, (k-+ 1), Py (k
+ 1); together with the previously computed cost sensitivities Ju(k + 1),
Jp(k + 1), J(k + 1), J,(k + 1) obtain F, f defined in (22), (23).
Finally, the control to be applied, up(k), is.calctlated from its explicit
expression (21).

The iteration described in step™2) above is carried out to obtain better
covariance sensitivities. The -control wp(k) could have been obtained
directly from (21) by skipping step 2) sbove; however, as indicated in [13)
and [14], this results in unsatisfactory performance. With this iteration of
step 2), the **improved®” sensitivities yield good performance as shown in
the next section, .
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IV. SIMULATION RESULTS

Performance is evaluated from S00 Monte Carlo runs for the following
controllers:

1) heuristic certainty equivalencs [3) (with a one-step horizon);
2) one-step ahead cautious controller; and

3) dual controller based upon sensitivity functions (with a two-step
hocizen) derived in Section IIL

The plant equations for a two-input two-output system are
Yk + 1) = =apyi(k)=auy(k)+ b (k) + (k) + e (k+ 1) (1)
Nkt )=

where

—ayyi (k) —anys(k)+ by (k) + Bypup (k) +e(k+ 1) (2)

Efelk)e'())} = Woy=diag (W), W)}

W =1.52% Wy=432 3)
The true values of the parameters are

an=0.8  by=-74.84
_ ap=0.0  by=~—51.04
ay=02  by= 5331
=075  by=—82.56. @

Only the gain parameters (B matrix) are considered unknown for
testing the dual effect and their initial 2stimates were generated as 9 (by,
b%), i, j = 1, 2. This choice of system was motivated by the helicopter

e e b e TR R b § e =
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TABLE |
AVERAGE COSTS FOR THE THREE ALGORITHMS IN THE SIMULATION
WITH A LIMITER (Ju,] = 2,0, {#;] = 2.0) (500 MONTE CARLO RUNS).
THE SUPERIOR RATE OF ADAPTATION OF THE DUAL AUGORITHM
1S DEMONSTRATED HERB

Time HCR Cautioua Dual
Step
k - L x
LR Zzz % Za!. & zaz
. 1=l [C3N 1=1
1 14651 14851 3623 3623 6944 6944
2 6261 21092 3961 7584 6722 13666
3 578 24670 3246 10830 4230 17896 {-
4 1616 1 26286 | 283 13666 1866 19762
5 1356 | 27640 2505 16171 1492 21254
5 807 28447 2154 18325 953 22207
Y 593 29040 1921 20246 700 22907
8 462 29502 1670 21916 582 23489
9 397 29899 1623 23539 535- 24024
10 k1Y) 30246 1327 264866 385 24409
* . . . . . L
40 77 34664 281 43810 89 29178
L]
TABLE I

STATISTICAL SIGNIFICANCE TEST FOR COMPARISONS OF THE CAUTIOUS
AND THE DUAL ALGORITHM IN THE SIMULATION WITH A LIMITER
([uy] < 2.0, |uy] =< 2.0) (500 MONTE CARLO RUNS)

g3t Test Estimated ‘
vibration study [13] Step | Statistic | Ivorovement]
A large initial uncertainty is chosen in the parameter estimates in order k % 138 .
to test the learning capabilities of lhc various adaptive algorithms. The N 1 o1
cost weighting matrices are 2 -5.3 69
) . 3 2,2 .30
Q(k)=diag (g1, )i @1=1.0, ¢=1.0. ® ‘ 33 b .
6 6.0 56
The desired response is 7 6.3 64
= [~ 18 80]’. © 9 63 e
10 5.7 71
For the model chosen (1)-(6) the optimal contro! solution in order to 1 6.3 - 76
reach a steady-state value of y, in (6) is g :: P
$=1.0, ut=~1.0 7 15 55 7
Hr=ih ==t . @ 16 4.9 10
. . 7
In terms of the notation of (1) and (2) g 22 7%
- . 19 4.4 76
(k) 8 fan an bu(k) 6u(k) an an bu(k) bu(k))’ ®) 20 4.3 76
and '
a | =ntk) =nk) wk) w(k) 0 0 0 0 9
Hk [ 0 0 0 0 —n k) @) b ®)

The controllers are implemented with a sliding horizon for a total of 40
time steps. The evaluation criterion is

Ce=(y(k+1)-2) QY y(k+ 1) =) (10

A, Analysis of the Monte Carlo Average Cosis

Compansons are made between the performances of the cautious and
the dual algorithm on the.system and a statistical significance snalysis is
done using the normal theory approach (i.c., it is assumed that the central
limit theorem holds for the sample mean from a large number of runs)
[14]. Tables I-IV contain the:results of the simulation runs. Table I
compares the average cost €y over 500 Monte Carlo runs for the first 40
time steps for HCE, cautious and the dual dgomhms, with a control
limiter Juy} < 2, "= 1,2, 0502 o .

Clearly it is scen that 1he cumulative average cost is the fowest-for the
dual controller, The HCE incuts an-excessive: pcnalty in-time step-1)
because of Jack of caution. The cautious controller is overly cautious and
exhibits slow convergence. However, -the dual controller incurs-less
penalty in time step-1) than the HCE and makes a-judicious choice of

caution and probing to learn the parameters fast, Fig. 1 compares the
performances of the three algorithms for 500 Monte Carlo runs. Both
Table I and Fig. 1 demonstrate the superior rate of adaptation of the
dual algorithm.

Table I provides a statistical significance test and shows the improved
performances.of the dual solution from time step 4) onwards with at least

-98 percent confidence.

Table ITY indicates the percentage of runs where the cost exceeds 2000
for the two algorithms. This threshold of 2000 is selected from a sample

-distribution study of the cost at each time step, Table IV shows the
-pergentile test-[14], {15] comparing.the cautious and the dual solution.

They cleacly.indicate from time step 4).onwards the light tailed nature of
the distribution of the cost yielded by the new dual control algorithm.

‘B. Individual Time History Runs

Analysis of the Monte Carlo average cost indicates the unprovcmcnt

-offered by the dual soluuon. it proyides no information sbout the cdutious

control's’ tummgoff phcnomenon {16}, {18]. Hence, a careful investiga-
tion of the individual runs is required to cxamine these occurrences.

p— fm AT ——
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F“. - EE A
I TABLE Il
COMPARISON OF THE TAILS USING THE CAUTIOUS AND THE DUAL
¥ ALGORITHMS IN THE SIMULATION WITH A LIMITER
(] < 2.0, fuz| = 2.0) (500 MONTE CARLO RUNS)
Time Percentage of runs
. Step vhich axceed 2000
IS ' k Cautious Dual
-
: 1 86 76
12 60 52
3 L, 43 40
4 3 25
5 L} § 17
6 22 10
7 22 s
. 8 19 7
9 16 3
10 12 2
1 12 1.2
12 10 1.4
13 1 1.4
14 7 1
t 15 ] 0.4
% 16 [ 0.4
: 17 6 0.2
18 6 0.4
19 s 0.4
20 5 0.2
c ) TABLE IV
?ERCENTILE TEST FOR COMPARISONS OF THE CAUTIOUS AND THE DUAL
y ALGORITHMS IN THE SIMULATION WITH A LIMITER
(lu] = 2.0, Ju] s 2.0) (500 MONTE CARLO RUNS)
I Time R
H Stap |X- test statistics
L % T at Ky,
; - —
2 -
3 .
4 10
5 19
[ 23
. 7 32
. 8 35
9 57
10 37
5 11 40
12 40
13 40
. 14 16
15 32
16 11
17 L1
18 16
19 18
) 20 28
I:
)
CAUTIOUS, DUAL AND HCE
1 : cAbTIOUS
[+ & DUAL
:'! - ——— KCE
{
N [}
gai 1
% -
2 1
1 8 .]
b ~
; 1
{ ]
. £g BCN 3] 30 F/)
; Time Step I
JFig. -1, Time history.-of the average cost using the heuristic certainty

. equivalencé, cautious, and the dual controllers. (500 Monte Carlo runs;

" il s 20, [ = 2.0.) The.superior rate of-adaptation of the dual
‘ -algorithm is demonstrated heze.

-

*

199

20. 50.

-10.

output 1

-40.

=70.

0 10 FRE] @
Time Step
Fig. 2. Time history of autput I using the cautious and the dual algorithms
for run 90 (500 Monie Carlo runs; 1] = 2.0; ju] s 2.0).

-100.

: CAUTIOUS AND DUAL

150
>

100.

Qutput 2
50.

0.

¥ emmenn.

=-50.

8 .
5 - ~
0 10 20 0 40

Time Step -

Fig. 3. Time history of output 2 using the «uutious and the dual algorithms
for run 90 (500 Monte Carlo runs; |wy| s 2.0; [uz] s 2.0).

CAUTIOUS AND DUAL

Control 1
.2 .6

-2

9
'

0

Time Step

Fig. 4. Time history of control 1 using the cautious and the dual algorithms
. for tun 90 (300 Monte Caslo runs; s} = 2.0; |u,} =< 2.0).
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CAUTIOUS AND’DUAL
' me -~ DUAL
q

1

Control 2

v
~
R
S
H
h Y
0 ~
k1
o B
Yoo
. | l t
Wy : Sy
4 _ N B
;iq 13 20 -4 A0
Tire Step

Fig. 5. Time history of control 2 using the cautious and the dual algerithms
for run 90 (SGO'Mbnlc Carle quns; |y] = 2.0; [r] = 2.0).

The turn-off phcnomcnon Is observed {n many runs.among the 500

Monte Carlo sirnulations while usmg ‘the cautious controller; run 90 is a

typical example of it, Bath compongnts are almost off between time steps
0 and 20 dunng which the -dual controtler glready identified the

parameters and ' reached- eh- desired trajectory. Figs. 2-5 pomay this
result.

N

V. Concr,usxo.vs

A new adaptive dual control solution with a two-step eliding horizon
has'been developed for an- ARMA-MIMO system. The <ontral-law is
derived by solving the stochastic dynamic programming ¢quation. This
solution utilizes the dual cffcct by performing a second-order Taylor
serics expansion of the expected future cost and does rot need any tuning
for any-of the runs ‘in the example. It modifies the cautious solution by
explicit numerator and denominator correction tecms. The controller in its
present foim' is the-first of its kind in a closed form for.a system ‘with
unknown paramctcrs. The controller is “tested on a MIMO system in a
systema(lc Monte Carlo fashlon. Conclusions are based on 500 Monte
Carlo runs., Analvsm of the snmulatxon runs has shown that this new dual
canlrol solut:on apphed toa multunput multioutput model improves

B ’

.

*
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over the cautious controller. The key improvement is in the avoiding of

situations like turn-off and slow convergences, typical of the cautious
solution.
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TIME-REVERSION OF A HYBRID STATE STUCHASTIC DIFFERENCE SYSTEM

Henk A.P. Blom
National Aerospace Lab, NLR
Ansterdan, The Netherlands

ABSTRACT

The reversion in time of a stochastic difference
aquation in a hybrid space, with a Markovian
solution, is presented. The reversion i{s obtained
by a martingale approach, which previously led to
reverse time forms for stochastic equations with
Gauss-Markov or diffusion solutions. The reverse
time aquations follow from a particular
non-canonical martingale decomposition, vhile the
reaverse time equations for Gauss~-Markov and
diffusion solutions followed from the canonical
martingale decomposition. The need for this
non-canonical decomposition stems from the hybrid
state zpace situation. Moreover, the non-Gaussian
discrete time situation leads to reverse tine
cquations that incorporate a Bayesian estiwmation
step.

1. INTRODUCTION

This paper adrasses the problem of time-reversion
of a hybrid state Markov process which is given as
the solution of a stochastic difference equation.
The desired result is a similar equation but
running in reverse-tixe direction while having a
solution that is respectively pathwize and in
probability law equivalent to the solution of the
forvard equation.

The motivation to study this problex steas from
two different kinds of application. The first is
to approach the solution of a nonlinear smoothing
problem by a merging of the estimates of two
nonlinear-filters: one tilter matches the original
model and is appiled in the usual time direction
while the other filter matches the time-reversed
nodel and is applied in the reverse-tine
direction. The second spplication is the
determination of a rate distortion theory lower
bound tor a discrete-time nonlinesr filtering
problem by the method of Galdos. This method is
based on Bucy's repressentation formula and
requires a Monte Carlo simulation in reverse-tine
diraction of model matching trajectories, starting
from a prespscified end point (Galdos, 1981;
VWashburn et al., 1985). Por both of thess two
applications it is necessary to have a
tiza~reversed difference equaticn for which the
Markovian solutions -are in probability law
squivalent to the original solution.

This research has been supported by AFOSR Grant
84-00112, vhile the tirst author vas on leave at
the University of Connecticut.
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Our problea falls in the category of how to
reverse a Markov process in time. The Markov
property i{mplies that the past and the futura are
independent under the condition that the present
state is known (Wentzell, 1981). This invariance
with respect to the time direction is the Xey
property used in time-reversion studies. There are
tvo types of studies that deal vith this problem;
a classical type and a systems-type. The classical
type of study assukes that the transition measura
or the generator of a Markov process is given and
then tries to characterize the transition measurs
in reverse-tine direction (Nagasawa, 1964; Xunita
and Watanabe, 1966; Chung and Walsh, 1969; Azéma,
1973; Hasegawa, 1976; Dynkin, 1978; Willlanms,
1979).

The systems-type of study assumes that a*
stochastic equation with a Markovian solution is
given for which it tries to characterize the
time~reversed aquation. The first time-reversed
equations were obtained by orthogonality
arguxents, for the linear Gaussian situation
(Ljung and Kailath, 1976; Lainiotis, 1976). For
general diffusions, it has alveady been pointed
out by Stratonovich (1960) how to obtain the
reversed-time equations by actually following the
classical approach: from a stochastic equation via 4
the generator and the time-reversed generator back
to time-reversed equations. A truly systems-type
of study has been started by Verghese and Kailath
(1979), by showing how for a linear Gaussian
systom a more diract martingale approach leads in
a simpler way to time-reversed cquations.
Noreover, by this approach it wvas possible to
obtain a reversed-time equation with a pathwise
squivalent solution. Early slaborations of these
ideas led, along different routes, to
time-reverszed equations with pathwise equivalent
solutions (Anderson, 1982; Castanon, 19827
Pardoux, 1983). During subsequent studies, quite
large classes of stochastic differential equations
and their reversed-time aquations have been
jdentified (Elliott and Anderson, 1983; Pardoux,
1983; Elliott, 1986a, 1986b; Haussmann and
Pardoux, 1986; Pardoux, 1986). Recently these
results have baen extsnded by using tha Girsanov
transformation of Brownian motion (Picard, 1986;
Protter, 1987). Obviously, this Girsanov approach
can not be applied to dilcontinuoun or
discrete-tine processes.

To give an ides of why thore is an additional
problem {n using a martingale approach to the
reversiZh of an oquation vith a discontinuous
solution, ve give a-briet outline of the approach.
The rartingale approach roughly consists of
checking if the tima-reversed driving noise
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seguence can be decomposed in a suitable
reverse-time martingale part and its complement
and next, if such a decowposition exists (Jagod
and Shiryaev, 19877 Jacod and Protter, 1988§7
selecting such a decomposition. The final step is
to characterize both the martingale part and ita
complement. In contrast wich a continuous process
such a decomposition is not unique for a
discontinuous process (see for axample, Jaéod and
Shiryasv, 1987). This makes the selection of™
suitable martingale decomposition far from trivial
in the hybrid state space situation, because a
less good choice yields unnecessarily complicated
revarse-tine equations. This complication ls
presently unsolved, neither in continuous-time nor
in discrete-time. It will ba solved {n the sequel
for quite generzl difference equations in a hybrid
space. With that result ve subgequently reverse
the considered difference equation in time.

The paper is organized as follovs. In section 2 ve
define the hybrid state stochastic difterence
equation that will be considered and shortly
compare its time-reveraion with the time-reversion
of a linear Gaussian equation. In section 3 ve
specify the time-reversion requiraments. Next, in
sections 4 and S we consider, respectively, the
pathwise time-raversion and the in probability law
aquivalent tixe~reversion. In section 6 ve discuss
the results obtained.

2, THE STOCHASTIC DIFFERENCE EQUATION CONSIDERED

The stochastic difference equation we consider in
the sequel is the following system, on an
appropriate stochastic basis and a discrete tine
intarval (0,T) # Nx(0,T], T<e,

Xtey ™ (0410t Xe, Ve, (1.a)
Stey = b(#e.ved). (1.b)
Yt w C(de,Xg Ve Ut) (l.c)

where (wg}, (ug) and (ve) are i.i.d. standard
Gaussian ssquences of dimension p, q and 1
respectively, the initial distribution of (xg,80)
has the density mass function pxo"o' and

{we,ve,ue) is independent of (xg,09). Further x,
8¢ and y¢ have respectively R"-, X- and R™-valued
realizations (with M a countable set), while a, b
and ¢ are measurable mappings:of appropriate
dinensions such that system (1) has a unique
solution for each initial (xg,8p) vith
pxo'oo(xo,oo)no. The mappings a, b and c are

time-invariant for notational simplicity only.

The second order depandence of (l.a) on (s} is
quite unCommon (Blom, 1985). Obviously, (l.a)
reducez to the matre common situation of first
order dependence, only if a(f¢sy.0e,Xe,Ve) i8
invariant w.r.t. either #¢ or #¢4p. The
interpretation of (1.a) as an aquation vith a
second order dependence on {#y) suggests the
substitution of ge41%8(0p4q,0¢) in (1.a). On doing
this (1.a) reduces to the more common equation,
and it follows immediately that (g:) and {fe)Xe)
are Markov processes, However, as the state space

of gy is signiticantly larger than tha state space
of ¢#¢, this is a rather brute force Sransformation
of (1.a). A more elegant transformation of (1l.a)
to the mora common equation consists of
substituting (1.b) in (1.a), vhich yields an
squation of the following form,

Xgey = &' (0g/XesVEIVE) -
Instead of a state space expapslon, thers appesrs
an additional noise term, v. From the lattar
represantation, it follows imsediately that the
processes (8¢,X¢) and (#¢) are Narkov processes.
The latter transformation clearly shows that (1.a)
{s indeed more qenaral than the more commonly
studied equation vith first order dependence of
(0g). With the study of this wore general
equation, we also anticipate the tine~reversion
results cbtained. In the sequel it will turn out
that a reverse-time equation of (1.a) has, in
general, a sacond order dependence on the
time~revarsed (0p), even when a(0¢4y,0p.X¢,Ve) is
s¢-invarfant. In view of this, it is natural to
study the above more general form.

In the sequel ve consider the tims-reversion of
system_(1) under the folloving assumptions:

Al

a(0,%,.,¥) has an inverse a*:X2xRPxRP=R®, such

that for any (o,u,v}exzan,
at(o,n,a(8,0,%,¥),W)uxs sll xemrn, (2)

A2

b(.,.v) has an inverse b”:MxRsX, such that for any

VER,
b*(b(a,v),v)=8: all seX. (3)

Assumptions A.) and .2 suggest to transform

(1.a,b,c) to the folloving timc-reverszed model,

,Xe=a” (0ee1/ 0t Xeer Ve) ¢

0p=P {6c+1Ve) s

Ye=c (¢, Xp, Ye o Uy) .
Because (w,vy) and the future (= reverse-tixe
past), 3¢y ~ 1{ (Vg Xg,85) 3 SE[LHL,T)), are
dependent, this is not the time-raversed systux we
should look for. Unfortunately, it is not clear
how to continue from hers. To develop some
insight, we take a quick look at the
time-reversion of a linear Gaussian system.

consider the following linear Gaussian system
Xgsy @ Axg + Bwe.
Assumption A,1 implies that A is invertible, by
which
Xy = ATt {(Xg4y = Bwe]s
obviously vg and the future S¢4; ave depandent,
which requires a martingale decomposition of wg.
In this linear Gaussian case the canonical
martingale decomposition is the appropriate one.
It consists of decomposing v in-its reverse-time
predictable part, E(ve|Spsy}, and its complement
vf;:
e Ve = E(Vt[’t¢x) + V.t.
The problem is nov to write the predictable part
as a function of xp4y (if possible) and to
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characterize the covariance of w"¢. As pointed out
by Verghese and Kailath (1979) it follows readily
from orthogonality arqguments that Lo

E{we|%ea1) = E{¥elxeer)s .
vhile the fundamental formula for LLSE estimation
yields

E(velXeey) = BTR™L(t41) X¢p 4y,

Cov{w'y) = I- BTR"1(t+1)B, \
whare R(t+l) 1s the covariance of X¢.g.
By a straightforward substitution of these ra!ﬂlcs
ve obtain

xg = A1 (xgey = B BTRL(ERL)xg4y = BW'e),
which yields the desired reverse-tixe system:

Re = A"l (Rpyy - B BTR™I(t41)Reyy = BRe).
The orthogonality arguments and the LLSE
estimation step, used in the abova procedurs,
pravent a straightforward extension of that
procedure to equation (1). In the sequel ve
replace the orthogonality arguments and the LLSE
estimation step rospectively by Markov duality
arquusnts and a Bayesian estimation step. Besides
this, we have to select an appropriate martingale
decomposition. Following the linsar Gaussian case,
the canonical martingale decomposition seenms a
qgood candidate:

(veove)=(vet v ") 4E( (e, ve) [3een)
Unfortunately, this decomposition leads to very
complicated elaborations of the Bayesian
estimation step., To avoid these couplications, ve
use in this paper the following decomposition:

(Wt ve™) = (wg,ve) - (W, V) o
vith: V¢ & E(vgiSgsy) and

Ve B B(WelSeeysVele
The main step, that must be carried out, is to
prove that the latter is a martingale
decoaposition, and to elaborate on ths Bayesian
estimation step. For the presentation of these
results a constructive approach is taken, starting
with a precise description of the time-reversion
objectives,

3. TIME-REVERSION ODJECTIVES

He want to cbtain a time-reversed version of

system (1), such that its solution, (P¢,R¢,¥¢), is
in sous sense equivalent to (yp,Xp,f¢i. Tc make
this objective explicit it needs both a
specification of vhat we mean by a time-raversion
of (1), and a specification of the desired sense
of process equivalence.

BY a reverse~time system ve mean a stochastic
difference equation which starts at time T and
runs ‘in negative time direction on tha {nterval
(0,T). We require from a time-reversion of systam.
(1) that it does not changs the state space and
that the solution of the resulting reverse~time

system represents the process (¥¢,Xe,¥¢). More

speciticly, {P¢,R¢,¥¢) must be the solution of ths
following systsm of stochastic difference
squations, all t€{o,T-1}:

o et oo i i e et - PR—

. i

. : * ¢ # ’ ;\\f.
v = Xt Veer TerRearofe)o (4.8)
't - b(t"€+l'gt+1'°t)' (4.b)
e = c(tl,t+1:'c02t#1lgt'°c:uc)' (4.¢)

vherse &, B and & are deaterministic mappings of

appropriate dimensions and (Wg,¥¢) is a noise
sequence to be specified. For a better
understanding of {4) notice that the substitutions
of (4.8) In (4.c) and of (4.b) in (4.a,0)
transform (4) to & revarse-time system of the more
common fOrm:

Ry = Kt FesyoReer Ve Ve) o
€ = Bt Feer Resr Ve) )
e ™ &t Fre1 Reer Ve Verue)?

To be a useful reverse-time system, (%,¥¢) should,
as much as possible, be independant of ths future
(= reversed-time past) information field

’t+1 & o ((DgiRge¥gi Vg Vg lig) ¢ SE(EHL,T]).
A minimal requirement is then, that the

conditional expectation of (W¢,¥¢), given ;t+1:

all te(o,T-1).

should be zero. Bacause ;t is a decreasing
sequence of sigma algebraz, the latter can most
easily be put in martingale language (see Elliott,
1982; Xumar and varaiya, 1986; and the definitions
below):

{9, %) in (4) should be a reverge-tipe Martingale
Difference sequence w.r.t. Fe. ,

X_Definition
Assune {8¢; t€(0,T}) is an increasing sequence ot
information fields, i.e. 84.1C84; any s€{1,T).
A random sequence, (&) is said to be a Martingale
Differance sequence w.r.t. Sy iff for all te{o,T),
(1} by is 8¢~measurable,
(1) E(ltcl)<m,
(iii) E(rylsg)=0 2.8, for all s€(0,t-1]).
2_Detinition
Assume (3¢; t€(0,T)) is a decreasing sequence of
information fields, i.e. $4,C34.,7 any s€(1,T).
A random sequance (k) is said to be a
3¢ iff for all te(o0,T),
() ¢ is 3y ~measurable,
(1) E{{tgl)<m,
(118) E(rgl3,)=0 a.s, § for all s€[t+l,T).
Having specifisd the desired typs of raverss-time
system, the next stap is to specify the types of
equivalence of zolutions of systams (1) and (4),
in which ve ars interested. For stochsastic
processas several useful types of equivalence have
baen defined and named in the past. We restrict
ourselvas to the two most important types of
equivalence and their unambiguous names (Elliott,
19821 Jacod and Shiryasv, 1987):
.. = indistinquishable,
‘ - equivaient in law.
Definitions are given below.




A_Definition

Tvo processes ({¢) and (Etio tE(0,T), are said to

be indistinquishable i¢ they are defined on Lthe
sane probability space (a,3,P) and

P{ 'ty = ¥y , all te[0,T) ) = 1. (%)

4_Definition

- b
Two processes (ty) and (ty), t€(0,T)], ara‘,aid to
be gguivalent in_law, if they hava the same wtate
space, X, and for all Ogty<ty<...<tysT,

P((!c ,..,!t JEdX) = P(((c ,o.,t )EdX) ¢ (6)
for any k and nll neasurable dxcsk

For discrete-tine processes (5) ls satistied it

and only if, for all t€{0,T), {~l¢ almost surely.
our objective in the sequel is to obtain
tine-reversed systems of type (4), with solutions
that are respectively Aindistinquishable and
ggn}xg}gn;_jn_lgx Ww.r.t. the solution of (1).

4 INDISTINGUISHABLY TIME-REVERSION

In this section we derive a type (4) version of
system (1), such that thelr solutions,

{Pc.Re,8¢) and (yg,Xe,0¢), are indistinguishable,
and illustrate these results for a jump-linear
example.

The tirst step of our derivaticn consists of a
substitution of (2) and (3) in (1), to arrive at
the in ssction 2 discussed time-reversed system,

xg = at J(0tere0t i Xesrove), (7.2)
or = b (0¢41,ve), (7.b)
Yo = (0. Xg Wy U} {7.c)

Although (7) and (4) look similar, one requirement
is not met: the driving nofse f{n (7) is not a
rsverse~time Martingale Difference sequence w.r.t.
the future information field

e 2 o l(YgiXgs 05/ Vg lig) ! SE[L,T)). (8)
Thezefore our next step lg to introduce a
particular reverse-time Martingals Differance
sequence, (w.",ve*}, as follows,

("C.lvt.) - ("'tovc) - (ata;;) ’ (9.a)
with
T & B(veiSeard, (9.b)

Ht ] E(th’c’.lp‘lt,:
and (UT 'V )-0.

all t€(o,T-1). {(9.¢)

Notice that the definition of ¥y differs
significantly from the reversa-time predictable
Process E{vwi|3%¢41). As such the decomposition in
(9) is not ths uniqua canonical decomposition (see
Jacod and Shiryaev, 1987). The introduction of
this non-canonica) decomposition is a crucial step
necessary for obtaining the time-raversion of
hybrid state syztem (1).

In the sequel we varify that (vt Ve *} is indeed a
revarse-tine Martingale Dittcroncc soquonco v.r.t,
$¢, and thus also w.r.t. ’t & S U c((V. Vg *1
8€{t,T])., Noredvar we show that, due to the

> g .fh-r-"

duality of the Markov property, (W, %) is
conditionally independent of 3¢4y given

{Xte1e0ter)
5__Theorea

Assune (wg, Vi), (Gt.ﬁt) and (wp*,ve") satisty (1)
and (9). Then (w* ') is a toVorlc-tlno
Hartingale difference sequenca w.r.t. 3.*, while

Uy and v, satisty:
Ve = E(vel0teys0tiXee1 ) (10.a)
Ve = B{velbpep,Xesr)e ALl EE{0,T-1).  (10.b)

Proof: See Blom ar.. Bar-Shalom (1989).

Thaorem 5 implies that We and V¢ can ba written as
Ve = £(t, 04y 0t Xeer) s (11.a)

Ve = gt 0pay,Xpe)) e (11.b)
Substitution of (9.a) and (11.a,b) in (7.a,b,c)
ylalds

Xp = 8(E,0pere0eoXee1 oY e} (12.a)

t * Bt ogareXeer Ve {12.b)

Ye E(:,atu,at,xf_ﬂ,xt,v'c,ut), {(12.¢)
with,

(L, 0,0,%,¥%) = a*(0,n,x,wt4L(t,0,0,%)), (13.a)

b(t,s,x,v*) = b*(s,v*+q(t,0,x)), (13.b)

S(t,8,%,%,2,u",u) = c(n,z,w+E(t,0,%,%),u). (13.c)
The above result iz summarized by the tollowin?
corollary.

$_corollary
Under assumptions A.1 and A.2, tha =molutien

{Pt.Re, ) Of the reverse-tine system (4) is
indistinguishable from the solution  (y¢,Xy,0¢) of
system (15 it

(1) (PpeRp,8p) = (YpiXp07) a.s.,
(11) Z, B and & satisfy (13.a,b,c),

{IIX) (ac,vt) - (Vt Ve ) a.s, : all te(o,T-1},
with w* ¢ and vt ¢ satisfying (9.a) and (10).

Jump=linear example
To illustrate the results obtained so far, let us
consider the particular situation of a linear
mystem with first order Markovian switching
coefficients and observation noise independent of
the system driving noise. Both a(e,%,x,w) and
c(x,x,v,u) are then linear in (x,w}, vhile ths
girst is a~-invariant and the sacond is v-invariant,
by which syatem (1) simplifies to,

Xtey = A0g4y)xe + B(Oer)¥e,

Srey © B(Og,ve),

Ye = G(op)xe + H(s¢)ug.
Then from Corollary 6 we readily find the
indistinguishable time-reversed system,

xg = A"1(0p41) (Xpsn = Bioesy) (Wptw'e) ),

'Ot -~ b‘«(ﬂc+1,°c‘fvtt),
Ye = G(og)xe + H(op)ug,




uhere {w*¢,v*¢) is the reverse~time MD-saquence of

Theores 5, Vt'f(‘:¢c+1:°t:*cbx)c vt-q(c OperaXeel)
and £, g and b" are according to (11) and (13.b).
The difference equation for x is similar to the
one for the linear Gaussian example in section 2,

But due to W, it may even be nonlinear fn Xy4y.
At the end of the next section we will show that
there are some further simplitications possikie

tor this example, in case of in probability law

equivalence.

S. EQUIVALENT IN LAW TIME-REVERSION

In this section we derive conditlons under which
the solutions of (1) and (4) are equivalent in law,
and discuss these results for a jump-linear
exanple. So far cur line of reasoning is quite
similar to the martingale approach of
time-reversing a diffusion. Hovever, things are
quite different now we requirc equivalence in law
only. The reason is that while in tha diftusion

situation this requires that d;t and dwy are
equivalent in law, no simllar simple results hold
in the discrats-tims situation. Instead of this,
we identify the relation between conditional laws

ot vc and wg by a Bayesian estimation step. Next
we characterize f and the required lav of w';.

2 _Theoren
Under assumption A.1 the solution (¥y,R¢,¥¢) of

reverse~tine system (4) is equivalent in law w.r.t.
the solution {yg,xy,8¢) of system (1) if,

(i) P((Fp, Ry, ¥p) €4X) = P{(yp,Xp,87)€dX})s
for any measurable dXCR™xRPxM,

(i) ¥ and & satisty (1l.a,c),
(iid) P(¥emn|Fesy=0,Re 417X} =
= P(Og=n]0¢4y™0,Xes X},

(iv}) Y[Qtedxl(§t+l,y~+l,,t) {x,0,n))=

= P(we de1(xt¢1,6t+l,dt) (x,8,n) ),
all (x,8,n,t)ERPxM3x(0,T~1) and measurable dXCRP,
with v*¢ and ¢ satisfying (9.a), (10.a) and (11.a).

Proof: See Blom and Bar-Shaloa (1989).

our remaining problem is the characterization of
the conditional law of v'.. As this is actually a
discrate~time nonlinear tiltaring problem, it can
be done by applying Bayes formula. We do this
undar the following additional assumptions:

Al The a priori distribution of (x¢,.o¢)
permits a density-mass function for all teé{o,T}.

Ao a*(e,n,x,v) is once differentiable in xeRD
for all ‘

(8,%,w)ERZxRP,

If the distributions in (iv) of Theorem 7 have
density-mass functions then it can easily be
veritied that (iv) implies,

-
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th"t*l‘at'Xt*l(w‘"cl.)‘ (1‘0‘)
where Wy matisfies (10.a).

With this our remaining stop is to characterize
the density at the right-hand side of (14.a) by
applying Rayzs tormula.

8_ Proposition

Under assumptions A.3 and A.4, the alstribution in
(iv) ot Theorsm 7 permits a density which is
characterized by (14.a) and,

,8,0,%) = [958 "T(0,n,x
wt|°t+l'°t1xt#l( ) | x ( AN ,')‘

~c(8,n,X) P, ( ) B, 10 (a"(a,m,%,4)[n)}, (24.b)

with v, the gradient and c aither a normalizing

tactor or zero ift X10,n)=0.
pxt+x|°t+xu't( le,m)
Moreover,

P(Fpn]8py1=0,Re41=X) = Plogmniop,y=e).

P (xj9,%) p~ (xl8). (15)

Xearl0teiefe es1i0eey

Proof: See Eloa and Bar-Shalom (1989).

Jurp-linear exanple

For a linear system with first order Markovian
switching coefticients ve arrived, in section 4,
at the following reversed-time squation:

Xe * A" (0¢4q) [Xpar = B(Oesn) [Fe#w'ed ),
with w¥y the reverse-time HMD sequence and

»

WeE(Wy [8¢41,0¢:Xeey ) Decause a* iz linear .in
(%,v), ite gradient w.r.t. x is w-invariant, by
which proposition 8 ylelds

puﬁlat+llat,Xt+1(w|°'nrx) -
»n ('1(3 n,x)P (U)Px |6 (Anl(a)f"'B(O)w“w‘

In spite of the sinplitlcacion this is a form
which {8 in general quite complex, by which "c
still may be a nonlinear function of xe¢sy.
obviously, this type of complexity could have been
expected, as it is well known that a discrete-time
Dayesian estiration step leads to nonlinear
equations, unless the prior densities involved are
Caussian.

6 CONCLUDING REMARKS

We considersd the problem of reversing the Markov
solution of a nonlinear stochastic differance
equation in time. The nonlinearities were due to
nonlinear cosfficients and a hybrid state space,
i{.e. a product of an Euclidean space and a
discrete sat. For simplicity, it was assumed that
the process in the discrete set satisfies the
Markov property. Subsaquently wa gave & precise
description of our time reversion objectives: tha
davelopment of time reversed differance equations,
of forms similar to the original equation, but
driven by reverssd~tize martingale

difference sequences, such that their solutions
are respectively indistinguishable from and in
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prebability law equivalent to the solution of the
original equation. rollowing this the derivation
of the {ndistinquishable revarse-time equatjon was
performed. The main nev theorstical rasult is the
introduction and evaluation of a non-canonical
(Jacod and Shiryaev, 1987) reverse-time martingale
decomposition, which is appropriate to the hybrid
state space situation. In contrast with this, all
previcus reverse~tine equations are based on a
canonical martingale decomposition. After that, it
was shown how the in probability law equivalent
tine reversed system can be obtained by
fntroducing an appropriate Bayesian estimation
step. As expected, this Bayasian estimation step
leads to closed form equations whose
dixensionality often complicates further
applications. In view of this, in Blom and
Bar-Shalom (1989) ve elaborate the Bayesian step
for linear systems with Markovian switching
coetfficients (jump~linear systems), and apply the
the results to smoothing a trajectory with s:dden
nanoeuvers.
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Abstract.

-

A realistic stochastic control problem .for hybrid systems

with Markovian fjump parameters may have the swilching parameters In both the

state and measurement equatlons.

Furthermore, both the system state and the

jump states may not be perfectly observed. Currently the only existing
implementable controller for this problem is based upon 2 heuristic multiple

model partitioning (MMP} and hypothesis pruning.

In this paper we present a

stochastic control algorithm for stochastic systems with Markovian Jump

parameters.

The control algorithm is derived through the use of stochastic

dynamic programming and is deslgned to be used for reallstic stochastic control

problems, l.e., with noisy state observalions,

The state estimation and model

Identification is done via the recently developed interacting Muitiple Model
algorithm, Simulation results show that a substantial reduclion in cost can be
obtalned by this new cortrol algorithm over the (MMP) scheme.

Keywords. Stochastic control;

Oynamic programming; Hybrid systems;

Multiple mode! partitioning; Markovian jump paraneters.

. INTRODUCTION

An Important problem of engineering concern
Is the control of dlscrete-time stochastic
systems with parameters that may switch among a
finite set of values. In this-paper we present
the development of 3 controller for discrete-time
hybrld jump-linear Gausslan systems. Here the
state and measurement equations have parameler
matrices which are functions of a Markov
switching process. The Jump states are not
observed and only the state s obsesrved in the
presence of nolse.

Along with presenting a desirable practicai
control algorithm we also-polnt ocut an
interesting theoretical phenomenon, Ve show that
there Is a natural connection between the
interacting muitiple model (IMM) state estimatfon
algorithm (B4} and the control of jump-linear
systems. Thus the IHH Is the state estimation
algorithm of cholice for use {n these types of
control problems,

Systems which pertain to the jump-iinear
modelling methodology are found In many areas.
Systems of a highly nonilnear nature can be
approximated by a set of linearized models (M3,
Vi, V2). A fallure In a component of a dynamical
system {(or subsequent repair) can be represented
by a sudden change {n the systems parameters {82,
S1, W1]. Also cconomic problems, which can be
modelléd-by parameters that are subject to sudden
changes due to sihortages in important materials
[G2]). And as is noted In [M6] there also exist
applications to the design of control systems for
large flexible structures in space.

There has been an extensive amount of ‘work
done {n this ares and on the related problem of
controlling stochastic dynamic systems with
unknown, {Ime-Invaciant. paraneters. Ve refer the
rcader to the [T3) and.iG3] for a list of
refecences and a discusslon of thelr scope and
applications.

Research sponsored under Grant AFOSR-88-0202,

Hore recently in (S2] a feedforward/feedback
controller was présented for the continuous~time
problem with a completely observed system state .
and where the "modal indicator™ is measured with
a high quality sensor. In-{M6} the
continuous~time jump-linear problem is considered
where the system state and “modal processes™ are
perfectly observed. The optimal regulator was
ottained and notlons of stochastic
stabilizabllity and detectabllity were introduced
to characterize the behavior of the optimal
system on long time Intervals. In [M7) the
continuous-time Jump-linear problem with additive
and multiplicative noises and noisy measurements
of the plant state was considered with the plant
mode assumed perfectly observed.

in [Ef) a sufficient stability test Is given
for checking the asymptotic behavior of the error
introduced by the averaging of hybrid systems.

In (M8] the continuous~time jump~linear problem
with non-Markovian regime changes was
considered. A control scheme was presented for
the case of perfect ovservations of. the system
staie and plant regime.

In (C3} 3 diszrete-time Markovian jump
optimal control problem was.considered. The
controller Is for the case of perfect system
state observations and known form process. They
derlve necessary and sufficient conditlons for
the existence of optimal constant control laws
which stabilize the controlled system as the time
horizon becomes infinite. Through examples they
show the [nteresting result that stabilizability
of the system In each form Is nelther necessary
nor sufficlent for the existence of a stable
steady-state closed-loop system.

In (Y1) a discrete-time system with perfect
state-and made Information was considered. A
controller was presentsd which is stabllizing in
the mezn square exponential senss.

As polinted out in (G2}, we generally cannot
determine the optimal Jump-linear quadratic
Gaussian closed-loop tontrol 1aw analytically




. even 10F a two-sigp probiem. In order to compute n-y

* the optimal control extensive numerical search J-- E[C(O))-E{x(N)’O(N)xlNlo2 [x(kl‘c(k)x(kl
.methods must be employed and thus one would ilke culkPRIKIulK ™
to find simpler suhoptimal control schemes. utkPR{K}u ‘]} (2.0

Currently the only existing Implementable
controller for this problem (switching parametecs where Q(k]20 for each k+0.l..N and and It s
) In the system state and measurement equations and suffictent that R(k)>0 for each k#0.,..,N-1.
nolsy state observations), is the one discussed The discrete~time system state and
in {T3]) and {s of the OLOF class. This algorithm measurement modeling equatlons are
is based upon a heurlstic multiple model
partitioning (MMP) and hypothesis pruning. The x{k} = FIM(k)Ix(k-1) « GIH(k)lu(k-1)
:mpl approalch, belng slmp‘le and straightforward Lo + vik=-1,M(k]) (2.2a)
mplement, Is a reasonable cholce for the unknown
parameter problem {Lt], and as shown {n (T3] {t z(k] = HIM(k)Ix{k) + wlkH(K)] k=0,12,.. (2.2b)
works well for applications Involving switching where x(k) Is an nxt system state vector, ulk) Is
parameters In the stale measursment equation :
only. For the non-switching paramelerqproblem an px1 control Input, and z(k) Is an mxl system
the operating made s determined to 3 high state observation \:ector. Tne argument M(k])
probability In 3 relatively short period of time denotes the model “at time k" - In effect during
and the MMP approach glves the linear quadratic the sampling perliod ending at k. The process and
Gausslan optimal control. measuirement nolse sequences, vik-},M{k)) and
For switching parameter problems a different wlkM(k]], are white and mutually uncorrelated.

situation exists. Here because of the switching
the operating mode may not be determined to a
high probability. The proposed approach to

s deriving a suboptimal control scheme is to start

The model at time k Is assumed to be among a
finite set of r models

K} ¢ {1,2,...., .
with the solution to the optimal control problem Hek) € {L.2,..r) (2.3)

via the use of stochastic dynamic programming.

for example
By utilizing dynamic programming and making P

appropriate suboptimal assumptlons the use of FIM(K)=]) = F (2.4]
numerical search methods has been avolded. Ve ! )
thus have developed a muitiple model controi - wll ~ v

scheme which has the followlng desirable vik-LH{k}=]) ”(“" ’l (2.5
properties: (a) it gives the optimal final wiKH{KI=f] ~ NNV (2.6}
control, (b} the algorithm utillzes the IMM state ' )

estimation scheme, and {c) it has the same

" l.e., the structure of the system and/or the
property as the MMP approach in that it gives the

statistics of the noises might be different from

- optimal linear quadratic control under the model to model
::sﬁ:::??w?\ic: ;):rhf:::lvyé:n:':n:n:\:g;:::lcslory The model switching process to be considered
as:um tion For this class of problems) here is of Lthe Markav type. The process IS
Fopr comparison purposes ?m; lmplen}gm the specified by a transition matrix with elements
. “switching parameters In the system state p”. Let
equation” controller, proposed (but not tested) .
In [T3]. We show via example that a * £ (z(0),z(1)....z(k},u{0)ul1),...ulk-1)] 2.7)
statistically significant reduction In cost can
be achieved through the use of our controlier denote the Information available Lo the
which also belongs to the OLOF class. controller at time k (le. the control Is
The paper is outlined as follows. In section causal}.

2 the prbblem formulation is given. In section 3
an interesting ‘connection between the IMM state
estimation algorithm and the control of multiple 3. THE LAST STAGE CONTROL AND THE CONNECTION

model systems (s shown to exist. In sectlon 4 we WITH THE IMM ESTIMATOR
obtain l"": °°““l"°‘ lal?ﬂl‘h‘: AI new "f;’""'";z" An Integral part of any control algorithm for
Soesible future parameter history sequences.  in this class of problems is Lhe systen state
: st .
szction 5 we use simulations to compare the MMP estimator. In this section we show that there

exists an Interesting -connectlon between the
control algorithm with the full-tree controller. control of multiple model stochastlc systems and

the IMH system state estimator (B81]. To this end

2, PROBLEM FORMULATION we start by solving for the time N-t optimal
The problem Lo be solved, Is discussed next. control. The optimal control at time N-f, is the
We taok the pragmatic approach of starting with value of u{N-1} which minimizes
the avaliable mathematical and statistical tools
found to yleld suyccess in SOIV‘HB slmllar - J(N"” - E{X(N")'Q(N‘!,X‘N"”‘U(N‘”'R"‘")U(N'u
problems of this type In the past (ie., use is
made of the stochastic dynamic programming method Ox(N)'O(N)x(N)Il"")
and the total probabiiity thearem, etc.). As we

shall* see, not only does this practical L4 . s
engineering approach yield an Improved multiple - E—; E{*(“'” Q(N=1)x(N~1)su(N-1)'RIN-1JU(N~-1)
model control algorithm, but it also leads to the

Interesting theoretical observatlon of a direct . -1 -
connection between the INM state estimation *%(N) D(N)x(N)ll HIN] j}
algorithm and Jump-linear control. N-1
It is desired to find a sequence of causal - PIH(N) =1 (3.1

control values to minimize the cost functional




. B (NIN-1) & PLMINYa I Y)

and use Lhe state equation (2.23) and (2.4),
(2.5) In (3.1) to get

IN-1) - 2 E{xIN-1)]QIN-1)+F ONF xN-1)

+2u(N=1)'GQINIF x(N-1) +u(N-1)'[RIN-1)+GQIN)G,

+ u(N-1)[ "IN = i (NIN-1)

4
o,}.:‘ tr(Q(N)V,lu,(NINﬁl (3.3}

Now taking the partial of (3.3) w.r.t. ufN-i) and
setting t to zero ylelds

. r o, -1
i wit-1) = =[RiN-1)+ 3 GG (NIN-1)]

L4
- S GaNIFE{x(N-D}* HIN=
Z COWNIF, [xan-1) i
b (NIN-1) (3.4)
Notlce that
E{x(N-D|*HINI=g) = }rjl g{xn-n}* " pinD=),

HN=1)=1} PIH(N-1) 1 IH(N) = L") (3.5)

where, since M(N)=§ In the first conditioning Is

icrelevant, the expectatlon inside the summation
Is

"
M~

E{x(N-[I" L HINIL) = T R(N-1IN-1 (N-1IN-1)

i

2O(N-1IN-1) (3.6)

which Is the IMM mixed Initial estimate (B1).
Thus using (3.6} in (3.4) we get

w1} = ~[R0t-0 S o]
K
- Z6,(NIF RIN-1IN-1n (NIN-1) (3.7)
Bt !

1 4. THE CONTROL ALGORITHM

We will derlve a full-tree conlrol aigorithm
{FT) which computes control values by taking Into
account all possible future model histories. As
will be seen by our example this method offers
Improved performance over the existing scheme
{731

The l-th future Aistory of models |s
denoted as

E e (MK sl HIN)=l,) 1o, rH b {4.4)

where | Is the model at time ! from
history 1 and

1shsr Ikl (4.2)

(3.2

Sk 2 :&l‘s\ E(x(k)'O(k)X(k)m(kl'R(k)u(k)

o Plcot ) (4.3)

where J'{k,*) Is the optimal cost-to-go from
time X to the end. Now applying the total
probability theorem to (4.3] yields

N~ke2
kit ! . .
rtiems 5 (e{xtkratkixik ¢ ulkIREulk)

v I B[N E et ) (4.4)

The controt that minimizes an approximation
to (4.4) Is derived in the Appendix, and Is glven
as

T LSSk -
oIkl =~ ROk e 2 6., Ptket) G INIKe11]

Hked

CUF 6, PRIy RU(kIKD(NIKet] (4.5
I ¢ "

and again we see Lhe natural way the IMM mixed
initial estimates show up.

Note that the control parameters P'k)
(mode}-history-conditioned optimal cost matrices)
are computable off-line,

S. SIMULATION RESULTS :

The FT controller developed In Sec. 4 is used
to control the state trajectory of the system.
The performance of this algorithm, as determined
by (2.t), Is compared to the cost obtainable by
using the MMP controller discussed In {T3). In
order to oblain a meaningful comparison we use
the rigorous statlstical analysis technique
presented in [B5, W3

1he control of a double integrator system
with process and measurement noises Is consldered
with a gain fallure. The two possible models are
glven by the following system equation

WMket) = [ (’)I k) » [ f,' :] uik)

2
. [TT’ZJ viK] j1,2 (5.1)
with measurement equation
z(k) » (1 0) x(k} » wik) {5.2)

The models differ In the control gain parameter

b, The process and measurement noises are
mutuatly uncorrelated with zero mean and
variances given by

Elvik) v(f)} = 0.16 6,, (5.3)
and
Elwik} wil) = & (5.4)

The control gain parameters were chosen to be
p's2 and b¥=0.5.

The Martkov transition matrix was selected to
be




At

- -

Lot 05l (5:5]

* For this example N=7, and the cost parameters
R(k) and Q(k), (see (2.1)}, were selected as

R(K) = 5.0 ka1,2,...N=1 (5.6)

and

[} [88 887
a(1) 58 %8
a2) i3 98
at3) i3 18

- (5.7}

a(4) 38 %8
a(s) &8 28
ate) 38 48
Lo || 3% 94

where the last matrix, Q(7), reflects our desire
to drive x,(7) vigorously to zero. Also note
that for this example T«1.0.

The real system was initiallzed with
x(0)={30.0, 0.0}’ and a random selection was done
for choosing the [nitlal model with
P{M(D)=§]=0.5, I=1,2, The Kalman filters each
recefved an initial state covariance of

1.0 1.0
P{0}j0) = 1.0 2.0 (5.8)
and the initial state estimate was selected as
%,(010) -~ )
o e (59
X,{010) z{0) - z(~1})

where z(-1) = 30.0 » w(-1) and 2(0) = 30.0
w(0).

Statistical tests were made on the results of
S0 Monte Carlo runs. Sample means and variances
of the Monte Carlo costs C; defined in (2.1)
were computed for the FT, MMP, and “known

model-history” {l.e. optimum linear quadratic)
controllers.

Table | contalns the results. The FT
algorithm shows a clear reduction In cost as
compared with the MMP scheme. However in order
to provide a rigorous argument that the actual
performance Is ordered as Table | Indicales we
apply the statistical test presented in {BS, W3).

Table Il contains the results. The sample

standard deviation o; of the mean of
the cost differences, {"-C", are shown.

The hypothesis that the FT wontroller Is better
than the MMP scheme can be accepled onily If the
probability of error a Is less thawm, say, 1
percent, Then the threshold against which we
compare the test statistic &/9; Is
u=2.33. This test statistic has to exceed the
threshold in order to accept the hypothesis.

TABLE 1
SAMPLE AVERAGE COSTS AND STANDARD DEVIATIONS

7 Hodt’:ﬁ'l?lvsrlory FT MHP

Sample Mean 2,647 6,063 19,519
Sample Standard 8,096 3.96E5 1.12£7

i N NI o
E

e

the FT controller performs better than the HMP
controiler for this problem. The estimated
improvement (decrease in cost) of 70% |s
statistically significant.

TABLE I
STATISTICAL TEST FOR ALGORITHM COMPARISONS

Tes tstimated
Staustlc lr:prolcement
K 03 A/C; 4
FT-MMP 13,456 3,316 1.1 70

6. CONCLUSION

The development of a new control algorithm
for discrete-time hybrid stochastic systems with
Markovian fump parameters has been presented.
This contoller was derived through the use of
stochastic dynamic programming and by taking into
account ail possible future “historles of
models”. Thls scheme uses the IMM state
estimation algorithm. We show that there is an
Interesting connection between the IMH state
estimator and control of jump~linear hybrid
systems. This new controller {s of the OLOF
class and has off-line computable control gain
parameters.

From the example It is seen that this scheme
can achieve a statistically significant reduction
in cost when compared Lo the multiple model
partitioning approach.

>

APPENDIX

l. Derivation of (4.5}

Note that given the future Aistory of
models M"Y, the optimal cost-to-go

I(k+1,I*Y) is easily computed and Is
denoted.

Lot 2 E{x (ke 1Pk 1 x ko )| H )

o allket) {A.1)

where the notation from [B4) {s used for P{kel)
and oalkel).

Since the expectation In (4.4) is conditioned
Hlul)l.l'

on we obtain our of approximation

by replacing J (ke '} Inside the
expectation with (A.1), and (4.4) becomes

(N-he2
seMEme S (E{xtratkixik)  ulkIR(Ku(K)
121

« E{x(ke1)* P(kot)x (ko)1)

o ket ) (NIKet]) (A2)




Y

vwhere
#,INIke1] & PINMIMIY (A.3)

Now use (2,2a) and apply the smoothing ~
property of expgctation to (A.2) to get

Moke2
oy, thy o . . .
Sel= ot S (E{xkiratkixtk) « ulkiREkDu(k)

‘ [F.\.‘X(k)‘ckqu(k) . vlk-l.lk,,]]'P'(kq)[.]

o (ke D[M M4 1M vtk (A1)

Take the partfal w.r.t. ulk) of (A.4) and set to
zero to solve for

M-ke2 -
w(k)==[R(Kk] + T G, PlkeniG piNet]]

Neke2
©Z T PURenR E{x(]H N NI (AS5)

Ve still need to evaluate the expectation In
(A.5). This is done as follows. Note that
x(k} s independent of M(i), I=ke2,..N If
H{k+1) Is known, thus

efxtk)

Hk‘ot)(.llli} - E{X(kll“(k’” " lhl'l‘} {A.6)

But [A.6] Is “(klk), the IMM mixed
Inftial estimate (see (3.6)), thus using (A.6) In
(A.S), we get (4.5).
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ABSTRACT

Piecewise Deterministic (PD) Markov processes form a
remarkable class of hybrid state processes because,
in contrast to most other hybrid state processes,
they include a jump raeflecting boundary and exclude
diffusion. As such, they cover a wide variety of
impulsively or singularly controlled non-diffusion
processes. Because PD processes are defined in a
pathwise way, they provide a framework to study the
control of non-diffusion processas along the same
lines as that of diffusions. An ilmportant
generalization is to include diffusion in PD

_processes, but, as pointed out by Davis, combining

diffusion with a jump rdflecting boundary seems not
possible within the present definition of PD
processes. This paper presents PD processes as
pathwise unique solutions of an Itd stochastic
differential equation (SDE), driven by a Poisson
random measure. Since such an SDE permits the
inclusion of diffusion, this approach leads to a —-
large variety of piecewise diffusion Markov

processes, represented by pathwise unique SDE
solutions,

1. INTRODUCTION

Because many of the stochastic processes that we
nreet in nature have a state space that is a product
of a continuous space and a discrete set, we often
need pathwise models on such a hybrid state space.
As a result, several classes of hybrid state space
nodels have been developed, such as systems with
Markovian switching coefficients, doubly stochastic
counting processes and Markov decision drift
processes. Thege models are used in quite different
fields of applications, by which their studies have
often evolved separately. One reason to study hybrid
state space processes within a common framework is
that their martingale parts ara in general
discontinuous. Thls property has attracted a lot of
attention, and is by now very well documented
(Jacod, 1979; Cinlar et al., 1980; SBremaud, 1981;
Elliott, 1982; Bensoussan and Lions, 1984; Ethier
and Kurtz, 1986; Jacod and Shiryaev, 1987). It is
quite clear from these results that, to atudy hybrid
state Markov processes along the same lines as
diffusions, we need both pathwise representations
and strong Markov (martingale) characterizations of
those processes. Unfortunately, for hybrid state
Markov processes there is presently a lacuna of
pathwise representations with strong Markov
characterizations, This lacuna is apparent if we
depict the main classes of hybrid state Markov
processes in the form of a Venn-diagram (fig. 1).

There exist pathwise representations with strong
Markov characterizations of counting procasses with
diffusion intensity (Snyder, 1975; Marcus, 1978), of
diffusions with Markovian switching coefficients
(Wonham, 1970; Brockett and Blankenship, 1977) and

of Plecewidse Determinlistic (PD) Markov processes
(Davis, 1984). For many other Markov processes in
figure 1, there exist only strong Markov
characterizatlions (Kingman, 1975: Anulova, 1979,
1982; Bensoussan and Lions, 1984; Belbas and
Lenhart, 1986). Actually, PD Markov processes seem
the most interesting of all processes in figure 1,
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as they provide pathwise representations with a
strong Markov characterization of all major non-
dlffusion Markov processes. As such, PD Markov
processes provide a framework to study Markov
decision drift processes (Hordijk and Van der Duyn
Schouten, 1983: Yushkevich, 1983) along the same
line as diffusions (Vermes, 1985). With this, an
interesting generallization is to extend the spectrum
of hybrid gtate Markov processes by including
diffusion into PD Markov processes. As the present
definition of PD processes does not seem to have an
opening left for that inclusion (Davis, 1984), we
need a different approach.

P
- — « —

- ~
-~ Plecewise ~
~
Diffusion N
. Markov \
Counting Processes Diffusions \
/ Processes with
with Markovian |
| Diffusion switching |,
Plecewise Coefficients
\ Deterministic {
Markov

Processes

—
-—

Fig. 1. Hain,czégﬁé;‘df.ﬁ;ﬁéld-ktate Markov
processes,

The approach that overcomes this difficulty,
presented in the sequel, is to assume a stochastic
differential equation (SDE) in a hybrid space and to
construct a large class of piecewise diffusion
Markov processes fromw it. With.respect to the state
space wa restrict our attention to a hybrid subset
of a Euclidean gspace. Then the most general SDE is
of Ité type, driven by Brownian motion, w, and a
Poigson random-measure, p on (0,=)xU,

dEg = a(Eg)dt + B(Eg)dwy + £ ¥ (k. u) p(dE,du).

The path of a solution of this SDE is right
continuous and has left hand limits: f¢. = 1ip Ee-a-

If p generates a multivariate point (t,ug), then the
path of t has a discontinuity:

g = Kpo + *(Et_,“§)~
In the sequel we shall focus on pathwise unique
solutions, The classical result for the existence of
such solutions requires that ¢ is sufficiently
continuous (Gihman and Skorohod, 1972), which
restricts the SDE essentially to systems with
Markovian switching coefficients. However, there are
some non-classical pathwise uniqueness results that
allow 4 discontinuous y (Lepeltier and Marchal,
19767 Jacod and Protter, 1982; Voratennikov, 1988),
Taking thesae rosults as a starting point, we
introduce and evaluate a particular structure for v
in section 2. This structure poses hardly any
rastrictions on the possible solution of the SDE,
wnile it enables a separate evaluation of an
unbounded jump intersity and a hybrid state space
situation. In view of this separation, wae first
consider, in gsections 3 and ‘ﬁ the modelling of a
jump reflecting boundary in RP through -an unbounded
jump intensity, and after that, in saection 5, we
congider the hybrid state sitvation,
Assuma an open subset 0 of RM with- jump reflecting
boundary 30, which means that (f¢)} undergoes an




ingcantaneous jump into the intarior of 0 If (&)
tries to cross or to travel through 30. To modef
this with the above SDE, the Poisson random measure
p should instantanacously generate a Eoint when (&)
enters 30. Howaver, this is not possible as a
Poisson random measure geherates almost surely no
point at an entrance time. To overcome this problen,
we briefly discuss the following three approaches:

1. Replace p by a random measure, with almost
surely one point at an arbitrary time.

2. Assume a vy such that p generates an-active point
during an infinitesimal small timu interval
after entering 30.

3. Assume a ¥ such that p generates an active point
during an infinitesimal small time interval just
before entetfing 20.

Approach 1 adequately solves the instantaneous jump

roblem but creates many new problems, because if p

gs not a Poisson random measure, then the SDE can
not be anal{sed within the powerful It8 framework.
Approach 2 is the well known approach of randomized
stopping (Bensoussan and Lions, 1984). As this
approach allows (ki) to cross or to travel through
20, the resulting process is at best a modification
of a PD Markov process. Approach 3 is the desired
solution. However, the problem with appreach 3 {is
that it is in general not known how to carry it out.
A constructive answer to this will be given in the
sequel. It is clear that approach 3 needs a kind of
prediction of the time that (&) might, otherwise,
enter 30. Actually, PD Markov processes are
presently the only processes for which this
prediction problenm ?s solved (Davis, 1984). As such,
we first formulate that solution in an SDE set up in
section 3. Next, in section 4, we present a solution
of the prediction problem for the situation with
diffusion.

Finally, in section 5, we explicitly consider the
hybrid state space situation. The most interesting
effect of the hybrid state space assumption is that
it leads to a particular type of jumps: jumps in the
continuous state component of (%) that anticipate a
simultaneous transition of the discrete component of
{t¢). This type of jumps have been introduced by
Gnedenko and Kovalenko (1968) for piecewise linecar
processes and by Sworder (1972) for systems with
Markovian switchin? coefficients. For short we refe
to these anticipating simultaneous jumps as hybrvid
lumps. The SDE framework of this paper provides an
elegant way of representing the j of PD
Harkov processes and their piecewise diffusion

generalizations,

Some other interesting generalizations of PD Markov
Erocesses, not ‘considered in the sequel, are the
nclusion of continously reflecting or sticky
boundaries, The inclusjon of a continuously
reflecting boundary, while Ereserving pathwise
uniqueness, seems possible if that .boundary is
snooth enough (Chaleyat-Maurel et al., 1980; Menaldi
and Robin, 11985; Frankowska, 1985; Saisho, 1987).
The inclusion of a sticky boundary without loosing
pathwise uniqueness seems difficult if not
impossible, but strong Markov characterizations are
possible (Kingman, 1975; Anulova, 1979, 1982).

Notatjon

R = (0,0) and R™ = (=0,0),

Ry =~ R™(0) and R. = R™+{0}.

2 - (..,-2,-1,0,1,2,..),

N = (1,2,3,..).

£ = Col{kp,.. k) 1f & = COl(Ey,..,ty)

102 = ifj 0112 , 1t ¢ is a matrix

[012 o : 032 , if ¢ is a vector

tit ¢ i-th component of process Eg.

20 ¢ boundary of thae closure-of set 0.

Int(x) : integer part of x.

! X(True)wl and X(False)=q,

CADLAG : right continuous with lert hand Limits

ck(0) ¢ tha set of all real-valued functions that
are k.times contifivously differentiable on
0. The superscript iz deleted if kw0, IZ7 k
is followed by b, then £ and its first k
derivativeas are bouided on 0.

2(4) ¢ domain of oparator 4.

-~ —— ——
b

2__THE SDE OF LEPELTIER AND MARCHAL

We assume a stochastic basis {(#,%,F,P), endowed with
an m~dimensional standard Wiener process, &VE)' and
a Poisson random measure, p(dt,du) on RyxR4+E (Jacod
and Shiryaev, 1987, p. 70), with intensity neasure
dtxm(du), and consider the following stochastic
differential equation (SDE) in RyxRR,

dbg = s(kgddt + B(Eg)dwe + o fog ¥(¥g-,u) q(dt,du) +

+ R+£Rd-w(5t—lu) p(dt,du) , (1)

where ¢ is the martingale measure of p, tg is an
$o-measurable random variable, while «, 8 and ¢ are
measurable mappings of appropriate dimensions.

The classical referaence for equaticn (1) is Gihman
and- Skorohod (1972). Significant extonsions of their
results have been obtained by Laepeltier and Marchal
(2976) in their study of the relation between an
integro-differential operator and an SDE of type
(1) . Their particular SDE can easily be obtained
tromd(l), by ingrgducing homeomorphism gagpings of
R™xR% into (uerd4¥l;o<jujs1l) and of RYxRY into
(ueR%*1;1<¢]u| <o), and subsequently transforming m
and v correspondingly. Consequently, the results of
Lepeltier and Marchal can immediately be used in the
present study of (1), while allowing the intensity
of the active points in R* to be unbounded outside
some known Borel set 0/CRD.

—— - -

assunptions

ALl ghere is a_constant K such ghat, for all tegn,
la(E) 1% + 18(E)I2 +ofoq 1¥(E,u)[“n(du) £ KQ+[EI?).

A:2 For all k€N there exists a constant L; such
that, for all £ and y in the ball By=(u€r"; Yul2<k}),
la(E)=a(y) 14 + [B(E)=B(VIIZ + )
+ R-£Ra [¥(E u)=v(y,u) {°m(du) < LplE-y|~.

A’:3 0’ is a known Borel subset of R},
n*ind X{ v(t,u)20 )m(du) is uniformly bounded on 0/,

and [E+¥(E,u)] € 07, for all EeRP, uerdtl,

A’.4 For all kEN there exists a constant My, such
that, with By the ball of A,2:
a. for all kE€ByNO’,
n*&nﬂ te(E,0)] m(du) < My.

k. for all £€ByN(RM-07},

t fa 1¥(E,0)] m(du) < My,

given that, for ail ueRtxrd,
v(t,u) = y(k,u+Col(1,0,..,0}).

A’.5 For all veN there is a constant N,, such that
E( g atdpd X( ¥(Eg,1)#0 ) p(ds,du)) < N,.

2.1 _Proposition

Given m(du)=du;xx(dy) and assumptions A.l, A.2,
',3, A’.4, A'.5 are satisfied. Then equation (1)

hag for any Eqg€0’/ a pathwise unique solution, (ty}).

Moreover (f¢) is then a right continuwous Markov

process.

Remark: Proposition 2.1 is a version of Theorem III,
of Lepeltier and Marchal (1976), in the sense that
they considered the situation of 0’/= RN,
Nevertheless, for the proof we can almost follow
Lepeltier and Marchal. Another recent extension of
Theorem IIX, of Lepeltier and Marchal is to the
situation oé a non~Lipschitzian a in turn of a
su¥ficlent non-degeneracy assumption on 8
(Veretennikov, 1988).

Broof: )

If (1)’s fourth right hand term vanishes, then it is
wall known that A,1 and A.2 are sufficient
conditions (Gihman and Skorohod, 1972). As such, we
have to show that (1)’s fourth right hand term does
net change that situation, under A‘’.3, A’.4 and
ALLS

Due to A’.3 and the definition of Its integration a
solution of (1) is CADLAG. Due to A’,5, the
discontinuities in (t¢}, that are caused by (1)’s
fourth right hand term, are countable. Therefore we
can assoclate with each discontinuity a time, Ty,




and a multi-variate polnt, U, such that
0<T)<T7<..<T¢<.. and }ig Ty = o, Due to the latter
and (ty) being CADLAG,

4 -

§ tlg v(tomipttan = (g (e ).

If (1)’s first three right hand terms vanish, then
the latter sum is finite (a.s.) for all t€R,, due to
A’.4 and A’,S. With this result it is sufficient to
show that (1) has a patbwise unique solution:on an
arbitrary finite time-interval (0,T). For the
existence of a solution, see the proof of Th. III,
of Lepeltier and Marchal (1976; pp. 82-85). We
already know that a solution is unique and
$¢-measurable on (0,Ty). Because Ey is CADLAG and v
is weasurable, Ty is gT ~measurable, Then, by the

definition of a Poisson random measure (Jacod and
shiryaev, 1987, pp. 65-66) uT is $T ~measurable »

1 1
£, = ET‘_+ w(zT -t ) is 9T ~measurable and, due to

T
ALil, E;*EO » “PathwWise uni&ueness holds true on

(0,T1] a%d ET €0. Due to the latter, we can repeat

the procedurelto show that pathwise uniqueness holds
true on ([T;,T;) and ET €0, and so on for the

countable sequence of intervals. Q.E.D.
The interesting aspect of proposition 2.1 is, that
the coefficients of (1)’s fourth right hand term may
be discontinuous in t£. This is exactly what wa need,
to construct a class of hybrid state Harlov
processes that is larger then the class of solutions
of systems with Markovian switching coefticlents.
The first step towards this construction is
replacing v(f,u) by

v/ (E,u) = ¢(E,u) X( [uy<a(k)] U [FAE)SOI Yo (2.3)
where F is a measurable mapping of RU into (0,1}, v
and A are measurable mappings of apvrcpriate
dimensions, while the range of A is R;. With this
(1) becomes
deg = a(Eg)dt + B(Ekg)dwg + oufog ¥(Ep-,u) q(dt,du) +

+ pifpd ¥ (Egasu) p(dt,du). (2.b)
assumptions

A:3 Define 0

z (EERM; F(X)=0),
(t+v¥(E,u)) € 0/,

for all ter%, uerd+tl,

A".4 Given, for all t{e€RM-0/ and uer*xr%,
A(E)=1
¥(E,u)= (¢, utCol(1,0,..,0}),
and for any KEN there exists a constant My,
such that
P fa (x| n(au) < My, for all redy.
at.s
a. Q(E) is on 0/ uniformly bounded and continuous
n k.
k. {Eg), tERy, exits 0/ at most a countable

number of times.

2.2 Theorem

Given m(du)=duyxu(dy) and assumptions A.1, A.2, A.d,
A",4, AM.5 are satisfied. Then.equation (2.a2,b) has
for any £gE0/ a pathwise unique solution ().

Moreover ?Et) is then a Markov process, of which the
?ample paths are measurable on the stochastic basis
2,%,7,P).

Because, on 0/, A(t) is continuous in ¢ (dues to
A",5.a) and §(ul<A'), A’€ER, defines a measurable
mapping of R into (0,1) = X(uy<A(t)) defines a
measurable mapping of Rx0/ intc {(0,1). Because the
rang? ?t EA%:)(oél),(w$ can write

uj ) (F(£)#0) ) = X( uy<a(f) ) v F(k
of which“both right hand terms are %easurable. Thié
implies that the supremum is measurable, which
combined with the measurability of y, makes that v/
is meagurable. This ensures that (2.b) is a special
case of (1), with y replaced by ¥/ according to
(2.2). gitﬁ this we grg %gtt to verify that A.3,
A".4 and A".5 guarantee that A’ A’,4 and A’,S are
saticfied, which is atraightforwaéd. Q.E.D.

Having theorem 2.2, we are prepared to consider a
jump reflecting boundary (in sactions 3 and 4) and

. tha hybrid state space situation (in section 5), But

tirst we give a strong Markov characterization of
{t¢) if there is no reflecting boundary.

Given F vanishes everywhere and the assumptions of
theorem 2.2 are satisfied. Then for all §,€RD, (ki)
is a gemi-martingale strong Markov process, and igs
extended generator,+4, is gi

(3)

X ven by:
Af = 227+ 772 4 7tL for all rec2/bB(rny,
whare

22(t) "121“1(5)fzi(5)+xilg_1(5(E)B(E)TlijfEiEj(E):
(4)
TTE(R) gl o e -2 - ey (01 s7eea0),

(5)
TVE(E) =pnl o) LECEH)=2(E)] s¥(e,dr), (6)
and for all Borel ACRP-(0}),

57(%,A) 2p-fpd XU ¥(E,W)EA ) m(du) , (7)

steon) = MY g kg vewen ) ay kew . (®)

Proof:
Due to A.3, A".4, A".S and 0/=R1', the $c~predictable
part of & is

Ac = [ ategias + § Fs) g vrgo,u) mdwas.

Obviously, (Ay¢) is of finite variation on any finite
time-interval, while (k¢-A¢) 1s a local martingale =
{t+) 18 a (special) semimartingale (Jacod and
Shiryaev, p.43, Def. 4.21). This immediately implies
that (k) is a strong Markov process. Because (k)
is a semimartingale, the generator 4 follows from
It8’s differentiation rule for discontinuous

senimartingales (Elliott, 1982). Q.E.D.
3. PIECEWISY DETERMINISTIC MARKOV PROCESSES

In thie section, we represent PD Markov processes as
solutions of an SDE. Therefore, ge consider (2.a,b)
with 8=0 and v vanishing on R™xRY;

dEt - a(Et)dt +R+),CRd W(Et_,u).

«X( [ui<a(E)} U [F(£)#0] ) p(dt,du),
our goal jis to introduce a particular mapping
F:RN<(0,1), such that (9) has pathwise unique
sclutions which are PD MarKkov processes. The present
definition of a PD Markov process (Davis, 1984)
works without such a mapping F. Instead, there is
given an open subset 0 of RU, with a jump reflecting
boundary 20, such that (¢} instantanecusly junmps
into the interior of 0 §ust before it would,
otherwise, cross or travel through 20. For the
definition of a PD Markov process from (9) an
appropriate F.has to be constructed from 0 and a.
The. construction of F will be based on the following
differential equation, on (0,o)xRR,

di’sy = a(t’¢)dt, te(o,), (10)
which has pathwise unique solutions, assuming that «
satisfies conditions A.1 and A,2. From this, we
define 30 as the set containing all elements of 30
that are directly accessible by (t’¢) from 0:

20 = (€30 ; 5 TE(0,o) and t/gE0 such that
Er.=E A E/._€0), (11)

(9)

Next we introduce the following distance function,
dq(E,20) E inf (120 ; E/g=t A £/.€20), (12)
whgch is, under the abovec mentioned conditions on «,
a measurable mapping of RM into R. With this we
define, for ieN,

oé = (E€0 ; dg(%,20) 2 1/1), (13)
which are then Borel sets, and which form the Borel
set
-1
0/= .U 04, (14)
Now we define our particular F as follows:
F(E) = 1 , if gerP-0/,
= 0 , slsge. (15)

Due to the above construction, F is measurable, by
which theorem 2.2 yields:

2.1__corollary

Given an open subset 0 of R, and a mapping F,
defined by (10) through (15). Then, under the
agsunptions of theorem 2.2, equation (2) has for any
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toE07 A pathwise unlque solution {ty]. Horeover,
(ig) is then a Markov process, of which the sample
P

hs are weasurable on the.stochastlc basis
(8,%,7,9).

Next, we come to the wain result of this section,
which lmplies that (k) is a Plecewise Deterministic
Markov process.

3.2 Theorem
With probability one, the process (&), of corollary
3.1, exits 0UQQ zero times on (0,@).

Broof: +

By the definition of F, all points of p in R becoma
active as soon as () has exit 0. This situation
holds on until {f) reenters 0/. The reentering may
occur due to dr&tt or due to a jump generated by a
point of p in RT. Obviously, the cases that (&)
reenters 0/ by drift without exit of 0U20 do not
cause an{ difticulties. In all) other cases, the
probability of exit 0UQ by drift is

Z exp{-s/r) ds = r exp({-k/r},

with x=inf(1/1 ; i€N) and 1/r the intensity of

points of p in R¥. Because () exits 0’ at most a

countable number of times, the probability of exit

0U20 at least once is then v/t exp(-t/r). If all

points of p in RY are active, then because t€N,
¥*8 /K exp{=-k/v}) = 0,

wnich means a zero probability to exit 0U3Q0 on
(0,0). Q.E.D.

3.3 _Theorem
The process (ti), of corollary 3.1, is a
senimartingale strong Markov process, and its
extended generator, 4, is given by:
Af = L€ + 3%F for all £€2(d),

where ¢ and ¢% are given in propesition 2.3 with
8=0, while the goga n og 4 is:

D(d) = (£ € cX/P(o)ncP(oupn); 7te(¥)=0, all £E€20).

Proef:
Defina v process Ay as follows:
Ap = z a(tglds + Z X{Eg.€07) A(zs‘)ﬁd V(Eg.,u).

m(du)ds + 3, 2 fa ¥lEg _ow) dugxu(dw),
with §{ the F.-adapted times that (&g} jumps from
RO-07 iInto 0¢, i21 and $450,
83 = inf (5 > Sg.q i g-ERD=0¢ A EgE07 ),

Obviously, {A¢) is of finite variation on any finite
time-interval, while (E¢~A¢) is a local
J¢-martingale. Subsequently, (t) is a
senmimartingale. Application of Etd’a differentiation
rule for discontinuous (piecewlse deierministlc)
semimartingales to f(Ei), with £ € ct, ylelds:

£(ky) = £(ko) + igl 3%2 £(Eg.) (dEgly +

* ockse rtipd [E(Es-t¥{tgm,u)) = Fllg.) +

2
- B 3 flEsn) (Eso,ulg) BUS) A,

up to indistinquishaéility.
Substitution of A".4,

p(ds,du) = q(ds,du) + dsxm(du},

dts = dA; + d(local martingale),

n(du) = du fefda),
and using £ € é 2(0) n cb(OUQQ), yields

tee) = 2(eortyd §iit(ea tatta)1ads + § x(rgoe0)

M) g (kg (Ego,)) = £(Eg)) dsxdupxu(du) +

¢ 33, b fa (E(Eg #v(kg W) = £(5g )] dupen(du) +
+ d(local martingale),
up to indistinguishability.
Next we uge the property that

I*e(e) = 0, all £€20.
Because « is of linear growth and (k) is locally
bounded, (a(t¢)) is locally bounded. This implies
that (&y)} does not increase while travelling through
D=0’ to 20, as this takes a time interval of zero
durgtion. The latter and the assumptiona that
£ec®(0U20) and 7*e(k)=0 for all €20, imply that
7¥L(Eg)m0 for all Eg€0-0¢, With this,

£(ke) = £{tg) + Z 2£(kg) ds + d(local martingale) +

+ § MEadp te(rgrv(Egiu) = £(5g)] daxdupxu(a).
Substitution of §* yields

£(kg) = £(Eq) + E 4£(t;) ds + d(local martingale),

wnich implles that (&) is a strong Markov process
with extended generator (4, D(4)]. Q.E.D.

4. PXECEWISE DIFFUSION MARKOV PROCESSES

Having obtained PD Markov processes &s solutions of
an SDE, the next step is to include diffusion.
Therefore wa consider the following SDE:

A = a(kg)dt + B(Eg)dwy +R*§Rd V(Ega, 1),

«X( [uy<a(k)) U (F(E)=0] ) f(dt,du), (16&
which corresponds to (IX.a,b) if ¥ vanishes on R7xR%.
Initially we assume that 8(¥)s(t)* is positive
definite for all teR", but relax this assumption
further on,

Now we construct F, starting from the following
differential equation, on (0,=)xRM,

dEre = a(Esy)dt + B(E7y)dwy, te(o,x), (17)
which has pathwise unique solutions under
agsumptions A,)l and A.2, and which defines a family
of homcgenesous Markov processes with a measurable
transition function

P'E(r,A% g P(E'IEAIE'g-El, all Borel A. (18)

Because B8T is positive definite, any element of 30
ig accessible by (¢’¢) from 0. Thercfore we
initially use the toflowing Euclidean distance
function, R

dg(k,20) = inf {|k-y}| 7 y€al), (197)

which, obviously, is a measurable mapping.
Next, we define the Borel sets 0; as follows,

0% = (EE0 ; dg(E,DO) 2 1/1), ien, (20)
and from this the Borel set
1=
0r= . 04, (21)

As before, we define our particular F as follows:
F(k) = 1 , Lf E€RN-0/,
= 0 , else, {22)
Obviously, F is measurable, by which theorem 2.2
yields:

4.1 __Corollary

Given an open subset 0 of R®, and a mapping F,
definaed by (17), (18), (19*), (20), (21) and (22}.
Then, under the assumptions of theorem 2.2, equation
(16) has for any Eg€0/ a pathwise unique solution
{tEy). Moreover, (%) ls then a Markov process, with
sample paths being measurable on the stochastic
basis (2,%,F,P).

Next, we come to the characterization of the
boundary behaviour and the strong Markov property of
(Eg)e .

4.2 _ _Theorem
With probability one, process (&}, of corollary
4,3, exits 0UA0 zero times on (0,w).

Proof:

By, the definition of F, all points of p beconme
active as soon as (E¢) has exit 0/,say at moment T,
which situation continues until (t¢) has reentered
0/, say at moment T+4A. The exit may occur due to
diffusion or due to a jump generated by a point of p
in RY. Obviously, the cases that (&) exits 0-0/ hy
diffusion witlout entering 20 do not cause any
difficulties. In all other cases we know from the
proof of theorem 3.3 that A has an exponential
distribution of which both the mean and the standard
deviation equals r-~0+. With this, it follows that,
for any t€0/, the probability of entering and
exiginq 20 within 1/r isi

74 PPy (v, RP~0-30) < v7L Pes(v,(yERD ; |K=y| > K ),
with k=inf(1/4 : ien).

Bacause (t¢) is a diffusion and x>0, the right hand
side ig of order r icihman and Skorohod, 1972, p.
64). As this situation may occur a countable number
of times, we have to divide by ¢, ylelding order
(r/k), -of which the limit, ri0, is zero. Q.E.D.

4.3 Proposifion

Given the assumntions of theorem 4.2 are satisfied.
Then for all Eq¢€0/, itt) is a semimartingale strong
Markov process, and its extended generator, 4, is
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»Af moef 4+ gt tor all tenid),
where ¢ and 7% are given in proposition 2.3, while
the domain of 83

D{4) = (£ € c2:B(o)yncP(ousao); gHe(E)=0, all EEI0).

Proof: Similar to the proof of proposition 3.3,
except that now #¥f(tg}=0, for all £g€0-0/, follows
from £EC(OUA0). Q.E.D.

Finally, we conslder the more general situation with
B(¢)B(E)T being positive semidefinite. The
construction of F works according to equations (17),
(18), (20), (21) and (22), but with distance
tugc%ion:) ' (19)
£,20) = inf (r20; (20 N B )#() ),
whega 20 is the subset of 20 tﬁAE is accessible by
{E’¢) from 0, () is the empty set-and Ey , is the
closure of an n-dimensional ellipeoid, wizh centEe
t+a(f)r and shape defined by covariance 8(t)8(k)'r.
Obviously, dg(.,29) is measurable, by which the 0;’s
and 0’ are Borel sets and F is measurable, and we
get:

4,4 cCorollary

3iven an open subset 0 of R, and a mapping F,
defined by (17) through (22). Then, under the
assumptions of theorem 2.2, equation (IV) has for
any £g€0’ a pathwise unique solutlon (t¢). Moreover,
{E¢) gs then a Markov process, with sample paths
beEng measurable on the stochastic bzsis (a,%,F,P).

Next, we come to the main result of this section.

4.5__Theorem
With probability one, the process (t}, of corollary
4.4, exits 0U20 zero times on (0,%).

Proof:

By the definition of F, all points of p in R* bacome
active as soon as {ty) has exit 0/. This situation
holds on until (&«) Yeenters 0’/. The reentering may
occur due to drift and/or diffusion or due to a jump
generated by a point of p in R*. Obviously, the
cases that {ky) reenters 0+ by drift and/or
diffusion without exit of 0U20 do not cause any
dirficulties. Of those cases where 30 is accessible
through drift only, we follow the proof of theorem
3.1. Say 20, is the subset of 30 that can only be
entered by (t’y) due to drift. For all other cases
we then notice that a strictly positive type (19)
distance dy at the moment of exit 0/, corresponds
with a strgctly positive Euclidean distance from
20~ , due to the local boundedness of |a(f¢) | and
18(te) 1. Subsequently, we may follow the proof of
theorem 4.2 for these cases. Q.E.D.

4.6 Theoren
Given the assumptions of corollary 4.4 are
satisfied. Thea for all £q€0/, (f¢} is a
senimartingale strong Margov process, and its
extended genexator, 4, is given by:
Af = 2f + %L, for all f€D(4),

where ¢ and ?* are those given in proposition 2.3,
while the domain ~f 4 is:

D(d) = (£ €-G4+70)ncP(oU0); 7¥E(E)=0 all E€30).

Proof: Similar to the proofs of theorem 3.3 and
proposition 4.3,

5. THE HYBRID STATE SPACE SITUATION

In this section we explicitly consider the hybrid
state space situation for a system of the form
(2.a,b), in such a way that there is no need of
assuning a particular F or A. As such, all jump
reflecting boundary results of the former sections
£it into the results of this saction. For ease of
notation and interpretation, we rewrite tha SDE form
(2.a,b) by replacing the Poisson random measure, p,
by a multivariate counting process, v¢, such that
the pathwise uniqueness of (2)’s solu&ion is
prenerxad. We do that by defining, for all Borel

’

UcR*xR
re(U) = Z g X( [91<A(Egn)]) U [¥(Eg-)*0] ) p(ds,du),
(23.a)

#iEg~,u) q(dt,du) +

and then rewriting (II) as

ey = t
t = a(Eg)dt + B(Eg)dwe +oof g

. B G

+ atlad ¥(Eg.,u) dve(du) . (23.b)
The main objective of this section is to show that
thoe last term of (23.b) generates a particular typs
of jump: a jump in (E¢) that anticipates a
simultaneous switching of (£14). For short we refer
to thia type of jumps as hxhzid_jumna‘ Notlce that
these are in some gsense unexpected, as
all coefficients of (23.a,b) are non-anticipating.

To ghow thesa explicitly, we need some
preparation.

2.1 __Lemma

Under assunptions 2,1, A.2, A".3. A'.4 and ja%.5, the
pair of equations (23.a,b) has for any kg€0¢ a
pathwise unique solution (ky,vy}, where v is a
multivariate counting process on RyXR'xRYd of a
predlctable intensity, Ay =A(k¢.). Moreover both
tEt,ve) and (ty) are then semimartingale strong
Markov processes, of which (k¢) is indistinguishable
from the one in theorem 2.2.

Proof:

It follows from theorem 2.2, that the system of
equations (2.a,b) and (23.a) has, for any Borel U, a
pathwise unique solution (Ey,v¢(U)). With this,
system (2.a,b), (23.a) has a pathwise unique
solution {E¢,v¢). Obviously all Botentially active
points of p, that are in RyxR*xRY, are collected by
v¢+ in a predictable way, by which we can write
R*ind ¥(Ego,u) X( [up<A(Ee.)) U [F(Eg-)=0) ).

-p(dt,du) = oyfog ¥(Eg-,u) dve(au)

up to indistinguishability. This implies that the
solution of (2.b) is indistinguishable from the
solution of (23.b). Q.E.D.

How we are prepared to consider the hybrid state
space situation., Therefore we assume that the first
component of k¢ is M-valued, with MCN=(1,2,..), and
that we can write the first scalar equation of
(23.2) as follows:

dEdy = R+£Rd v1(Eg-,u) dvg(du), (2?.c)
with ¥ a mapping of ROxR*xRY into the integer
lattice, 2.
Next we assume that vy satisfies, for all uy€(0,A(%)],

w(z,u)-ngM x[ ggzx(i,s) Sy < igox(i,t)] e(m,E,1),

(24)
where ¢ 1s a measurable mapping of MxRPxrY into
2xRP~1, and ) is a measurable mapping of NxRM into
Ry suc? that A (i,.)=06 for all ie€N-M, and
ML, E)= A(E).
sy M

Morgover, we assume that for all nEN, £EZxRI-L and
UERY,

®q(n,E,0) = n-ty , (25)
which, together witﬁ (241 and X(i,.)ng for all
JEN-N, implies that if £1y€M, then (E¢) in RyxM.
Subgtitution of (24) and ?25) in (23.b,c) and

subsequent evaluation yield

aely = [y 2 x[ 2§;x(i,zt-) $ el < igox(i,et_)].

. S(n-tlel) dve(auxrd),  (26.a)
with: u'g = uy-ka(tg), .
for some integer k such that 0 < u™g £ A(kg),
dEe = a(Ee)de + A(Eg)dwg +pLog k(Fe-iu) Gt au) +

+ fa e(Ele ke ) dre(RPxdu), (26.D)

ve(u) = § § X( (U1 (Eg ) JULP(Eg)%0] ) P(ds,du),

- {26.¢)
all Borel UCr*xRd, where underlining of a vector
refers to all, but the first, components of that
vactor,

Assumptions

.4 Given, for all terM-0s and uer*xrd,
A(E) =~ ngxx("lt) =1,

e1(n,E,14) = "“11

m%du) = duyxu(dy) .
For all keEN thare exists a constant My, such
that for all EEBE‘
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2. For all k€0/,
A(i,¥) is continuous in ¢,
A(i,E)=0 for all 1EN-N,
A(E) = By A(1,5) is uniformly bounded.

R. (Eg), t€Ry, exits 0/ at most a countable number
of times,

5.2 __Theoren

Given the hybrid space 0’ s 00 (MxrR™1),

Under assumptions A,) through p,5, the system of

aquations (26.a,b,c) has for any £y€0¢ a pathwise
unique solution (kg,v¢). Moreover Etl is then a

semimartingale strong Markov process in Ry X0/,

Proo(:

Due to A,3 and A.5.a, (24) defines ¥ as a measurable
mapping (see proof of theorem 2.2), by which
(26.a,b,c) is a special case of (23.a,b,c). Next we
show that 3,4 implies aA",4, by which lemma 5.1 and
(24) imply that the solution of (23.a,b,c) is
indistinguishable from the solution of (26.a,b,c).
To arrive at A",4, we start from 2.4 and
subsequently use A,%,a, interchange order of
integration and substitute (24). Q.E.D.
Due to its extensive form, equation (26.a,b,c) hides
the results for which the above analysis has been
carried out. Therefore, We take a closer look at it
in case that p has no points in R™. Then, (26.b)
becones

dip = a(kg)dt + B(kgldwe + [g 2(tle, Epo,u)dre (RYxdU)

(27.a)
Moreover, to avoid the use of equations. (26.a,c), we
go over to the common descriptive way of formulating
{r¢) and (zlf):
{v¢) is a multivariate counting process
characterized by the J¢-predictable intensity,
Fe = Alke-) (1 + F(Eea) Lig /7],

and a deterministic jump measure z(dy).
(El¢) is a process with a countable state space, N,
and wi&h an St—pfedictable rate, rjj, ¢, of jumping
from tly_=j to Eiy=i, ixj, !

rij,t E \(i:(jlit-)) {1+ F('I-E-t—) ,]‘:*8 1/},

while iﬁj rij, e S Te-

From this formulation, we_easily notice the
interesting effect that tl, appears in the
coefficient, ¢, of {27.&)’5 third right hand term.
This means that o(t*y,te.,u) anticipates a switching
from t+¢. to ki, an& thus a jump of (&)
anticipates a simultaneous transition og (ely).
Verify that the anticipating coefficient ¢ afready
appears in (26.a,b,c), while there is no
anticipating coefficient in equation (23.a,b,c). as
the solutions of both equations are
indistinquishable, we conclude that (23.a,b,c) is
the canonical representation of a system with
junps, while (26.a,b,c), with the anciciiating
coefficient, is the representation that is more
useful when it comes to the realization of Markov
nodels with hybrid jumps.

Tee
(2¥'b)

(27.c)

Remark: If x(.,(€y,E)) is k-invariant, then (Elt) is
a countable state Markov process. In this case
(27.a) can strajightforwardly be obtained from a
classical system like (1) of which all coefficients
are continuous. For the situation that (k) is
continuous, i.e. =0, see Brockett and Blankenship
(1977) . For some applications with

i.e. »#0, see Sworder (13972), Blom (1984) and
Mariton (1987).
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Control of Discrete-Time Hybrid

Stochastic Systems
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Abstiract ’

A realistic stochastic control problem for hybrid systems with Markovian
jump parameters can have the switching parameters in both the state and
measurement equations. Furthermore, both the system state and the jump states
are, in general, not perfectly observed. Currently there are only two existing
controllers for this problem. One is based upon a heuristic multiple model
partitioning (MMP) and hypothesis pruning. The other utilizes the entire
future tree of models, and is cailed the Full-Tree (FT) controller. The
performance of the latter is superior to the former and their complexities are
similar. In this paper we present 3 new s*ochastic control algorithm for
stochastic systems with Markovian jump parameters. This control algorithm is
derived through the use of stochastic dynamic programming and is designed to be
used for realistic stochastic control problems, i.e., with noisy state
observations. This new scheme, which is based upon the interaction of r (the
number of models] model-conditioned Riccati equations, has 3 natural
parallelism and is straightforward to implement. The state estimation and
modei identification is done via the recently developed Interacting Multiple
Model algeorithm. Simulation results show that a substantial reduction in cost
can be obtained by this new control algorithm over the MMP scheme.
Furthermore, the performance of the new algorithm is shown to be practically
the same as that of the FT scheme even though the new scheme, which has a fixed
amount of computations at each step of the recursion, is much simpler to
implement than both the MMP and FT algorithms.

Reasearch sponsored under Grant AFOSR-88-0202.
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1. Introduction

An important problem of engineering concern is the control of discrete-time
stochastic systems with parameters that may switch among a finite set of
values. In this paper we présent the development of a new controller for
discrete-time hybrid jump-linear Gaussian systems. Here the state and
measurement equations have parameter matrices which are functions of a Markov

switching process. The jump states are not observed and only the system state

is observed in the presence 0. noise.

This new controller has control. gain coefficients that can b‘e generated
off-line and is designed Lo be real-time implementable. It belongs to the
open-loop feedback (OLF) class [B3] - incorporation of the dual effect would
have precluded the abové two rather important features. To date, thera is no
dual (closed-loop) controller for jump-linear stochastic systems with noisy
observations. Some preliminary work along these lines has bean reported in
[C3].

In addition to presenting a practical control algorithm we 3lso point out
an interesting thenretical phenomenon. We show that there is a natural
connection between the Interacting Multiple Model (IMM] state estimation
algorithm {B1, B5] and the control of jump-linear systems. Thus the IMM is the
state estimation algorithm of choice for use in these types of control
problems.

Systems which belong to the jump-~linear class are found in many areas.
Systems of a highly nonlinear nature can be approximated by a set of linearized
models [Mi, V1, V2]. A failure in a component of a dynamical system (or
subsequent repair) can be represented hy a sudden charge in the s:ystems
parameters [B2, Si, Wi}. Also economic problems, which can be modelled by

parameters that are subject tc sudden changes due to shortages in important

e e e T
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materials [G1] belong to this class. And, as is noted in [M2], there also
exist applications to the design of control systems for large flexible
struyctures in space.

There has been an extensive amount of work done in this area and on the
related problem of controlling stochastic dynamic systems with unknown,
time~-invariant parameters. We refer the reader to [T1] and [(G1] for a list of
references and a discussion of their scope and applications.

More recently in [S2] a feedforward/feedback co;ltroller was presented for
the continuous-time problem with a'completely observed system s_tate and where
the "modal indicator” is measured with a high quality sensor. In [M2] the
continuous-time jump-linear problem is considered where the system state and
“modal processes” are perfectly observed. The optimal regulator was obtained
and notions of stochastic stabilizability and detectability were introduced to
characterize the behavior of the optimal system over long time intervals. In
[M3] the continuous-time jump-linear problem with additive and multiplicative
noises and noisy measurements of the plant state was considered with the plant
mode assumed to be perfectly observed.

A sufficient stability test was given in [E1] for checking the asymptotic
behavior of the error introduced by the averaging of hybrid systems. In [M4]
the continuous-time jump-linear problem with non-Markovian regime changes was
considered. A contirol scheme was presented for the case of perfect
observations of the system state and plant regime.

In [C1] a discrete~time Markovian jump optimal control problem was
considered. The controller is for the case of perfect system state
observations and known form process {mode}. They derived necessary and
sufficient conditions for the existence of optimal consiant control laws which

stabilize the controlled system as the time horizon becomes infinite. Through
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examples they showed the interesting result that stabilizability of the system
in each form-is neither necessary nor sufficient for the existence of a stable
steady-state closed-loop system.

In [Y1] a discrete~time s;lstem with perfect state and mode information was
considered. A controller was presented which is stabilizing in the mean square

exponential sense.

As pointed out in [G1}, we generally cannot determine the optimal
jhmp-linear quadratic Gaussian closed-loop control lz;w analytically even for a _
two~step problem. In order to com;;ute the optimal control, exte_nsive numerical
search methods must be employed and thus one would like to find simpler
suboptimal control schemes,

Currently there exist two implementable controllers for this problem
(switching parameters in the system state and measurement equations and noisy
state observations). One of them is the one discussed in [T1] and is of the
OLF class. This algorithm is based upon a3 heuristic muit.ple model
partitioning (MMP) and hypothesis pruning. The other one is the Full-Tree (FT)
scheme developed in [C2].

The MMP approach, being conceptually simple and straightforward to
implement, is a3 reasonable choice for the time-invariant unknown parameter
problem [L1], and, as shown in [Ti], it works well for applications involving
switching parameters in the state measurement equation only. For the
non-switching parameter probiem the operating mode is determined to a3 high
probability in a relatively short period of time and then the MMP approach
gives the linear quadratic Gaussian optimal control.

For switching parameter problems a different situation exists. Because of
switching, the operating mode may never be determined with high probability.

The approach taken here to derive a suboptimal control scheme is
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to start with the stochastic dynamic programming formulation. By utilizing
dynamic programming and making appropriate suboptimal assumptions, a recursion
is derived and the use of numerical search methods has been avoided. We thus
have developed a multiple model control scheme which has the following
desirable properties: (a) it gives the optimal last stage control, (b} it

utilizes the IMM state estimation scheme, (c}) it has the same property as the
MMP and FT controllers in that it gives the optimal linear quadratic control
under the assumption of a perfectly knogvn model his.tory sequence (which is,
however, an unrealistic assumption i:or this class of problems), a‘nd (d) it is
implemented naturally using parallel processors.

For comparison purposes we implement the “switching parameters in the
system State equation” controller, proposed (but not tested) in [T1], and the
FT scheme of [C2]. We show via examples that 3 statistically significant
reduction in cost can be achieved through the use of our controller over the
MMP scheme. Also our new algorithm is shown to have practically the same
performance as the FT ¢: ntroller, which was shown in [C2] to be significantly
superior to the MMP algorithm. But, since our new algorithm has a fixed amount
of computations for each step of the backwards recursion, as compared to the
exponentially growing amount of computations for the FT scheme, it is much
simpler to implement.

The paper is outlined as follows. In Section 2 the problem formulation is
given. In Section 3 the connection between the IMM state astimation algorithm
and the control of multiple model systems s shown. In Section 4 we derive the
new control scheme which is suitable for real~time implementation. In Section
5 we use simulations to compare the MMP control algorithm with the FT

controller and with our recursive real-time implementable scheme.
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2, Problem Formulation
The probl.em to be solved is discussed next. We took the pragmatic approach
of starting with the available' mathematical and statistical tools found to
yield success in solving similar problems of this type in the past (i.e., use
is made of the stochastic dynamic programming method and the total probability
theorem, etc.). As we shall see, not only does this practical engineering
approach yield an improved multiple model control aléoritl\m, but it also leads
to the interesting theoretical observation of a direct connection between the
IMM state estimation algorithm and jump-linear control. —_—
It is desired tc find a sequence of causal control values to minimize the

cost functional

N-1
3 = Efco)=e(x(NVaNIxIN+ 3 [x(k)QKIx(K)sutk)RIKIu(K)]) (2.1)

where Q(k)20 for each k=0,1,..N and and it is sufficient that R{k}>0 for
each k=0,1,...,N-1.

The discrete-time system state and measurement modeling equations are

i

x(k) = F[M{K)Ix(k-1) + GIM(K)]Ju(k-1) + v[k-1,M(K]] (2.2a)

z(k)

HIM(K)Ix(K) + wlkM(Kk]] k=0,1,2,... (2.2b)
f where x(k) is an nx! system state vector, u(k} is an px! contrcl input,

and z(k) is an mx1 system state observation vector. The argument M(k)

denotes the model “at time K" - in effect during the sampling period ending at

k. The process and measurement noise sequences, v[k-1,M(k]] and wlk,M(k]], are
white and mutually uncorgelated.

a The model at time k is assumed to be among a finite set of r models

M(k) € (1,2,...,r} (2.3)

for example
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FIM(K)=]) = F, (2.4)
vik-1M(K)=j] ~ NlpV|] (2.5)
Wik M(K)=jl ~ NN W] (2.6)

i.e.,, the structure of the system and/or the statistics of the noises might be

different from one model to the next.

The model switching process to be considered here is of the Markov Lype.

The process is specified by a transition matrix with elements pij. Let

* 2 (z(0),z(1),....2(k},u(0),u(1),...,u(k=1}] (2.7)
denote the information available to the controller at time k (i.e. the control

is causal).

143
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3. The Last Stage Control and the IMM Estimator

An integnlal part of any control algorithm for this class of problems is the
system state estimator. In this section we show that there exists an
interesting connection between the contro! of multiple model stochastic systems
and the IMM system state estimator [Bi, BS]. To this end we start by solving

for the optimal control at time N-1 . The optimal co'ntrol at time N-1, is the

value of u{N-1) which minimizes

JIN-1) = E{x(N=1)"QIN-1)x (N-1)+uN=1)RIN=1Ju(N-1}+x (N} QIN)x (N) [ 1"
= 3 E{X(N-11Q(N-1)X(N-1)+u(N-1)RIN=1)u(N-1)
=1
« x (NN (| LMN =P =it*™) (3.0
Define

u(NIN-1) 2 P{M(N)=j1IN"Y) (3.2)

and use the state equation (2.2a) and (2.4), [2.5) in (3.1) to get

IN-1) = § E{x[N—l]‘[Q!N,-l]+Fj‘Q(N]Fj]x(N-1)+2u(N-1]'Gj'O(N]ij(N-I)
=i

+u(N-1)'[RIN-1)+6;Q(N)G JulN-1) VL MIN)= ) (NIN-1)

+i1 eIVl (NIN-1) (3.3)
J:

Now taking the gradient of (3.3) w.r.t. u(N-1) and setting it to zero yields
r

wN-1) = -[RIN-11+5 GaNIGp (NIN-1)]
i1 I ;

. S BaNIFE(xN-D[LHNI= ) (NIN-1) (3.4)
= .
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! Notice that
E{x(N-D|1*"LMen)=3) = ix E{x (-1 M(N) =L M(N-1)=1)

-P{MIN-1)=iIM(N)=}, 1"} (3.5)
where, since M{N)=j in the first conditioning is irrelevant {see for example
(81]]), the expectation inside the summation is

E{x(N-0)[I* % M(N) =} MN-1)=1) = E{x(N-0)|I*M(N-1)=1)
& X,(N-1|N-1) (3.6)
Using the following definition
wy(kIK) 2 PEMK)=iIMUk+1)=j,1%) (3.7)

and (3.6) in (3.5) yields

€ (-1 =) éQi(N-uN-nui,j(N-uN-n

2 2Y(N-1iN-1) (3.8
which is the IMM mixed initial estimate [B1, BS].

Thus using (3.8) in (3.4) we get

w(N-1) = ~[RIN-1)+ SN (NIN-1)]
= !

+ SGNIF RN~ 1IN-L1 (NIN-1) (3.9)
J:
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4. The Parallel Control Algorithm (PCA)

in the following we will derive a backwards recursive method for obtaining
control gain parameters that minimize an approximation to J'(k,I*), which
is defined to be the optimal cost-to-~-go from time k to the end. Using this

definition and (2.1) the Bellman equation is written

JikIf e min E{x(K)G(k)x (K)+ulk)'RIKIU(K) + J'(k+1,*})

+

The method is based upon the backwards propagation of r model conditioned

1"} (4.1)

matrix Riccati equations. Each of th‘ese r equations is propaga_ted by
utilizing a probabilistic combination of the Riccati matrices obtained in the
prior iteration. Thus at each iteration of the backwards recursion
computational requirements are fixed and the scheme has a natural parallelism.
In order to obtain a control based upon the propagation of r Riccati
equations we first denote the optimal cost-to-go at time k+1, given that

M{k+2)=i, as

et 2 min E{x (k1) Q(ke1)x (ke1) rulke1)RUKeDu(k+1)

+ J'(k+2,15*%)

! M(k+2) =i (4.2)
The conditioning with a time k+2 model is used because this is the model

starting immediately after time k+1 - see (2.2). These model-conditioned costs
are used to approximate the optimal cost-to-go in (4.1) as follows. The total

probability theorem is used as follows

E{J‘(ku,l"“)

¥ = 5 E{0" ket ik zs=i Hp ko)l (43)

Ve obtain our approximation of (4.3) by replacing the optimal cost-to-go, which
is a minimization of an expectation which has “smoothed out” M(k+2), with the

model-conditioned costs~to-go [which has M(k+2) in the conditioning as
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indicated in (4.2)] as follows

i E{J‘(kq,l"*‘)|M(k+2)=i,l"}P(M(k+zl=i|l")
i=1

E{J;tke1, 1)

]
% 2
&

Mike2)=1,1|P(M(k+2)=il1") (4.4)

-

Using (4.4) and (4.3) in (4.1) one obtains

. ~ [] ’ k
Ik 2 pin E(x(k) QXK + ulkIRIDuEIF]

+

E{5j(ket 15

M(k+2)=i,l"}P{M(k+2)=ill"}] . £4.5)

r
i=1

The cost~to-go from k+1 starting with M{k+2)=i is

Gkt ) = min E{x(ke 1) QlksDxlke1) + u(ke1)R(k+Duke1)

+ J'[k‘*Z,lk*z) !!k+1'M(k+2]=i}

2~ min

E{x(kq)'a[kq]x[kq) + u(k+1) R(k+1)u(k+1)
u(k+1)

L M(k+2) =i

r
¢+ 3 E{Jj(ke2, 1)
o

1“*‘,M(k+21=i.mk+31=j}

« P{M(k+3)=jiM(k+2)=i, ") (4.6)

where a similar method to the approximation technique that led to {4.5) was

used to obtain (4.6).
In order to obtain a recursion one can make the following assumptions
Jilke2,1?) 2 E{ x(ke2)P (k2] x (ke 2)| 2 M(Ke3)=]] + @ (k#2) (4.7)

and
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5 e[ [tk 2rp oaixtkon) [k ko2 ks i,
it
‘ ~ = N ikt -
% E{x(k+2) [;Pj(kn.)pij]x(k 2)[1* M(k+2)=1)
| = E{x(ke2)'s,(ks2)x(k+2) |1 M(k+2)=1] (4.8)
where
S(ke2) & ¥ Pke2lp, (4.9)
= '

and furthermore assume ozj[k+2] is independent of ulk+1}. With (4.7),

{4.6) becomes

B(ket 1 = min [E{x(kr1)QUke1)x(ke1) + ulke 1) ROks ke 13|15 Mk 2)=1)

+ 5 EfE[x(ke2) P (ke2)x (Ks2)
f

2 M(k+3)=]]

. ozj[k+2)l[k+1,M[k+2]=i,M[k+3]=j}pij] (4.10)

Now using (4.8) and (2.2a) in (4.10), and taking the gradient w.r.t. u(k+1)
and setting to zero yields

-1 .
u(k+1) = = [R(k+1) + G:S.(k+2)6.] G:S.(k+2)F, &%(k+1) (4.11)
1 i1 1 17 13

where once agzin we see the IMM mixed initial estimate showing up. Thus, using

(4.11],

Tk 1,150 2 E{x (ke 1)'Py(ke1)x (ke 1) | MCke2) = 1] + o (k+1) (4.12)
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where

Plks1) 2 {Qlkdl + Fi[5,k+2) - S,k 2)6[REK#1) + 65, ke2)5)

. G;Si(k+2]]Fi] i=t,.,r  (4.13)
P;(N) = Q(N) (4.14)

skl 2tripket)] + T E{or (ke2)
A

M M(ks2)=iM(ke3)=])  ist.r (4.15)
o,(N)=0 (4.16)

B,(k+1) £ S;(N-1)V; + F; Si[N-llﬁi[R(kd] + t;;siuuzlsi]"1
- 6;S,(k+2)F, T0(k+1]k+1) i=t,..,r  (4.17)

sOi(k+1[ke1) 2 cOv[x(k+1)[1**’,M(k+21=i] (4.18)

Ve can see now that the assumption that «; is independent of u,
i=1,2,..,r, was made to avoid the implications of the dual effect. Note that
the coefficients (4.13} and (4.14) are computable off-line.

Using (4.12}) in (4.5) (see Appendix) and solving for the control which

minimizes the approximate cost, one obtains

-1
u* (k)= -[R(k)'rz[ZG;Pi(k'rl)Gjuj“(kﬂlk]]P{M[k+2]=ill")]
P

» Z{ Ok P KK (ke 1K) P (MUK 2)=0)IF) k=0, N-2  (4.19)
]

where the cost matrices follow from (4.13) and (4.9). Also note that the

probabilities P{M(k+2)=i[I*} are calculated using the elements of the Markov
transition matrix and the time k conditional model probabilities (see

Appendix).
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Summarizing, the controller is given by (4.19) for all but the last period,

for which it is given by (3.9).

We note that the resulting algorithm is real~time implementable: its

complexity is linear in the number of models compared to a standard LQ

controller. We also note that there is a similarity between the form of (4.19)

and that of the optimal linear quadratic control, and that 5205 is

obtained directly from the IMM estimator. .

Note that the r Riccati equatfons (4.13) are coupled via (4.9) - which
is @ mixing or interaction of the results from the previous itera‘tion. These
equations can be implemented naturally with r parallel processors that
interact via (4.9) after each iteration. This and the fact that the IMM is
also parallelizable in the same manner motivates the name PCA.

Finally we note that if we were to take into account the dual effect the

complexity of the algorithms would have precluded real-time implementability.
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5. Simulation Results

The algorithm developed in Sec. 4 is used to control the state trajectory
of a system that can jump between two models. The performance of this
algorithm, given by (2.1), is compared to the cost obtainable by using the MMP
controller discussed in [Ti] and the FT scheme derived in [C2]). The MMP and FT
schemes both take into account the entire “tree” of future model sequences.
However these algorithms differ significantly in their derivations. The MMP
control is computed as a probabilistically weighted sum, over all possible
model sequences, of the “model sequence” optimal controls. In the FT scheme
the expected optimal cost~to-go is approximated as a probabilistically weighted
sum, over all possible model sequences, of the “model sequence” expected
optimal costs-to-go. In order to obtain a meaningful comparison we use the
rigorous statistical analysis technigue presented in [B4, W2].

The control of a double integrator system with process and measurement
noises is considered with a gain failure. The two possible models are given by

the following system equation

2
xi(k+1) = [ éT xi(k) + [ 0. ] u(k) + [”2] v(k) i=1,2 (5.1)
1 b T

with measurement equation

z(k) = [1 0} x'(k} + w(k) (5.2)

The models differ in the control gain parameter b. The process and

measurement noises are mutually uncorrelated with zero mean and variances given

by

Elv(k) v(])] = 0.16 & (5.3)

and
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Efw(k) wl]]] = & (5.4)

The control gain parameters were chosen to be bl=2 and b%=0.5.
The Markov transition matrix was selecied to be

0.8 0.2
0.1 0.9

For this example N=7, and the cost parameters R(k) and Q(k]), (see (2.1}}), were

(5.5)

selected as

R(k) = 5.0 k=1,2,...,N~1 (5.6)
and '
B (o) 17 3 3 318 i
a(1) 68 28
a2 | |88 S8
a(3) ¢d 98
- (5.7)
a(4) 38 59
a(s) 88 &3
a(8) 38 58
o7 %0 3

where the last matrix, Q(7), refilects our desire to drive x,(7} vigorously to
zero. The sampling period for this example was T=1.0.

The real system was initialized with x(0)=[30.0, 0.0}’ and a random
selection was done for choosing the initial model with P{M(0])=i]=0.5, i=1,2.
The Kalman filters each received an initial state covariance of

1.0 10

= .8
P(0IC) 10 2.0 {5.8)
and the initial state estimate was based on initial noisy measurements
%,(0]0)
& . [ 2(0) (5.9)
%,(010) 2(0) - z(-1)

where z(-1} = 30.0 + w{(-1) and z{0} = 30.0 + w(0).
Statistical tests were made on the results of 50 Mante Carlo runs. Sample
means and variances of the cost defined in (2.1) were computed for the MMP, FT,

PCA, and "known model-history” (i.e., the unrealizable optimum linear-
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quadratic) controllers.

Table I contains the results. The FT and PCA aigorithms show a clear
reduction in cost as compared with the MMP scheme. However in order to provide
a rigorous argument that the actual performance is ordered as Table I indicates
we apply the statistical test presented in [B4, W2l

Table I contains the results. The sample mean A and the standard
deviation 03 of the means of the cost differences, with

PCA_CFT  CMMP_GFT o MMP_PCA

realizations C;-C;', C i i i, for the i-th run of each simulation,
are shown. The hypothesis that ‘he FT controller is better than‘ the MMP or PCA
schemes can be accepted only if the probability of error ¢ is less than, say,

{ percent. Then the threshold against which we compare the test statistic

A/¢; is p=2.33. This test statistic has to exceed the

threshold in order to accept the hypothesis.

The results given in Table Il indicate that the FT and PCA controllers
perform significantly better than the MMP controller for this problem. The
estimated improvements (decrease in costs) of 70% and 697 respectively are
statistically significant. However the hypothesis that the FT controller is
better than the PCA controller, when using p=2.33 or p =165 (o =75%)},
can not be accepted. The estimated improvement of 1% is not statistically

significant and their performances are, thus, practically the same.
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TABLE |

SAMPLE AVERAGE COSTS AND STANDARD OEVIATIONS

Kno
MMPFT PCA  ModelofiStory
SSanlgtMegnd 19,519 6,063 6,141 2,647
ampie andar
Beviat i 23416 4,404 4,236 630

TABLE 11

STATISTICAL TEST FOR ALGORITHM COMPARISONS

Test Estimated
Statistic gost Redugtion
A 0z E/oa 7
PCA-FT 78 82 .95 i
MMP-FT 13,456 3,316 4.1 70
MMP-PCA 13,378 3,298 4.1 69
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6. Conclusion

The development of a new control algorithm for discrete-time hybrid
stochastic systems with Mar|_<ovian jump parameters has been presented. This
scheme has off-line computable control gain parameters, and is implementable on
parallel processors in a natural way. This controller is based on a fixed
number r (the number of models} of coupled Riccati equations and is suitable
for control problems with finite end-times. This scheme uses the IMM state
estimation algorithm. We show that there is natural connection between the IMM
state estimator and the control of jump-linear hybrid systems.

From the example it is seen that this scheme can achieve a statistically
significant reduction in cost when compared to the scheme of {T1]. Also we
showed that the present controller and the controlier of [C2] have
statistically indistinguishable costs. But our new controller has a fixed
amount of computations at each step of the dynamic programming recursion
whereas the schemes of [C2] and [T1] have an exponentially growing number of
computations. Thus our new controller is seen to compare favorably to both the

{T1] and [€2] schemes.
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Appendix

I. Derivation of (4.19)

With (4.12], {4.5) becomes
* Ky ~nv vt ’ ’ k
Ik = min [e{xtkrakixk) « uk) R(klu[k]ll |

+

E(E[x(K+1)P,(k+1)x (K1)

I M(k+2) = i]

r
=1

-

¢ aylket) [Mlke2)=1 )P eMIKe2)=111)] (A1)
Use the smoothing property of expectation, use (2.2a), then use the total

probability theorem in {A.1) to get

I = min |E{x(k)00)x(K) + ulk)RIKIu(k)|1¥)
ulk)

P E{[Fx(k)+GutkI+v (kD] Pk 1)[F x (k)G u(K) +u K, )]

¢
. ai[k+1]II",M[k+2]=i,M[k+l)=J'}P{M(k+1]=J'|M(k+2]=i.lk}}P(M[k+2)=illk)] (A.2)
Defining
(ketlk) 2 P(Mlke1)=][Mlk+2)=i,1) (A.3)
and noting that
E{x(K) [\ Mik+2)=i Miks)=]) = E{x(k)[IKMLke1)=])
= %%(kIk) (A.4)
[see (3.8)], and taking a gradient w.r.t. u(k) of (A.2) and setting to zero

yields uPA(k) in (4.19).
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’ 1. Calculation of P{M{k+2}=1)11%)

Using Bayes’ formula one can write

P(M(ks2)=D)I1Y) = 5 P(M(k+2)=1)IM(k+1)=}, )P (M(K+1)=]}11%)
=

r r
= S p. PMk+)=i)I} = $p. T pl.P{M[k)=llll") (A.5)
o [ TR

where the conditional mode! probabilities P(M(k]:l]ll"}, 1=1,...,r, are

obtained from the IMM estimator.
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Abstract
The performance of tracking and prediction systems of a maneuvering target
can be improved by using additional (and unconventional) measurements of its
apparent modes, typically provided by an imaging sensor. A model for the
image-based observation channel for target mode cstimation in discrete time is
presented in this paper. A multidimensional point process filter is obtained
by making use of the discrete time point process theory and its utilization is

ililustrated through simulation examples.
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Abstract : We consider the Jump Linear Quadratic Problem where lin-
ear state dynamics are made contingent upon the Markovian transition of
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approximation based on the optimal solution of an averaged version of the
original problem.
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1 Introduction

There are many applications where the state dynamics are disturbed by
random point processes : in fault-tolerant process control for example the
input-output plant model is contingent upon the indicator of the failure
regime. Similarly a tracking system for mancuvering targets needs to be
reconfigured when the mode of the encounter switches from level flight to
an evasive maneuver.

In this paper we study a control problem for the class of systems, often
called "hybrid systems”, that has been proposed in the literature to describe
such applications. Hybrid systems are characterized by their product state
space. To the usual Euclidean space (R") we append a finite set (S =
{1,2,...,N}) : on R" we can model the basic dynamics (e.g. position and
velocity of the target for a tracking system) and we use S as the list of
possible regimes of operation (e.g. with N = 2 the maneuver/no maneuver
mode of a tracked target). The regime jumps on S are modeled by a Markov
chain and the dynamics on R" obey a differential equation, the coefficients
of which are contingent upon the regime.

The study of hy brid systems can be traced back to the early sixties (Flo-
rentin, 1961, Krasovskii and Lidskii, 1961). The Jump Linear Quadratic
problem was introduced by (Sworder, 1969): the state dynamics being lin-
ear, an optimal regulation problem is posed with respect to a quadratic
performance index. For completely observed state and regime, the opti-
mal JLQ regulator has been obtained independently by (Sworder, 1969)
and (Wonham, 1971) from maximum principle and dynamic programming
points of view. Motivated by various applications, significant reseacch ef-
forts have been devoted to hybrid systems theory : the structure of linear
hybrid systems has been analyzed in (Chizeck, 1982, Mariton, 1988), re-
fined models have been considered in (Sworder 1973, 1980, 1982) and the
theory has also been extented to the discrete time setting (Griffiths and
Loparo, 1985, Chizeck et al., 1986, Ezzine and haddad, 1988). Surveys of
available results are given in (Sworder, 1976, Mariton, 1989).

More recently attention has been focused on the JLQ problem with
partial observations, i.c. the case where the state and/or the regime is only
partially measured through noisy sensors. The most general setting is that
of (Caines and Chen, 1985) and several approximations have been proposed
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(Sworder and Chou, 1985, Fragoso, 1988, Mariton, 1988).

A major difficulty is the dual control phenomenon : due to the couplings
between the state and the regime, the optimal control has to balance its
proper regulation objective with the need to excite the plant to gain more
information on the unobserved regime of operation. In this paper we present
a new approximation scheme based on an averaging of the exact system
dynamics.

The rest of the paper is organized as follows. In section 2 we formulate
the JLQ problem with partial observations and the main result is presented
in section 3 in the form of the optimal solution of an averaged JLQ problem.
Finally an example illustrates the solution obtained.

2 Problem formulation

We consider the JLQ problem as formulated in e.g. (Sworder 1969, Caines
and Chen, 1985). The plant state z,eR" obeys

dz, = A(re)z.dt + B(re)u.dt + D(r,)dw, (1)

where u,eR™ is the control vector, w, a normalized Brownian motion, and
A, B matrices of corresponding dimensions. These matrices depend on the
current regime of operation, r,S = {1,2,..., N} and we shall often use an
index to denote the regime, e.g. A; for A(r,) when r, = i. The regime
jumps are described by a Markov chain

dée = W, + dm, (2)

where ¢, is the regime indicator (¢.e{0, 1}", ¢, = 1 when r, = #,0 other-
wise}, m, is 2 martingale w.r.t. to the underlying system o-algebra and
Il == {m;)ij=1.v is the matrix of transition rates. The role of Il is better
underitood by observing that (2) implies

mdt +o(dt) T

plrasa = Jlre =1} = { 1+ mudt +o(dt) i=

Lo

The entric< of IT are thus the transition rates of the regime process. We
shall assu.u2 that z, is exactly observed but that the regime r, is measured
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through a noisy scalar channel
dyt = h(Tt)dt + dv, (3)

where v, is a Brownian motion with intensity ¢2. it is assumed that v, w
and m are mutually independent. The observation o-algebra available at
the regulator is thus X,vY, where X, = o0~ {z,,s < t}and ¥, = o~ {y,,s <
t}. The best regime estimate in the sense of minimal mean square error
would then be E{¢,|X,vY,}. However the control u, influences, through
(1), the information richness of X, and it is clear that using E{¢,|X.vY:}
would lead to a dual control problem. We shall thus assume that the direct
measurement (3) is of high quality so that we can take é = E{¢|Y))
without a significant degradation of the regime estimate.

This assumption can be understood in terms of the target tracking ap-
plication : when the target maneuvers it takes some time until the position
and velocity (= components of z,) reflect the change in acceleration while,
on the contrary, a direct sensor like (3) (maybe the output of an imaging de-
vice) can immediately signal a transition (maybe through a sudden change
of the apparent dimensions of the target). It is then interesting, especially
during the short transients where fast reconfiguration is required, to disre-
gard the slow information channel of X, and to base the regime estimate
solely on Y,. Obviously there are situations where this assumption is not
acceptable and, by enforcing it, we restrict attention to a special class of
hybrid systems.

The practical control objzctive is to stabilize z, near zero without spend-
ing too much control and this can be achieved by minimizing the perfor-
mance index

7= B[ (#Qz. + ulRu)dl]z, = 5,1, = b0} (4)
to

The weighing matrices @ {2 0) and R (> 0) are regime dependent (Q =
Q(r), R = R(r;)). Technical conditions are necessary to ensure that min-
imizing (4) indeed stabilizes the system. In the JLQ setting some care
is required in defining the most accurate notions of stabilizability (con-
trollability} and detectability (observability). This was pursued in (Ji and

nizeck, 1988, Mariton, 1986) but here we shall take the simpler condition




that the pairs [A;, B;] and [A,-,Q?/Q] are, respectively, controllable and ob-
servable in the usual deterministic sense. The class of admissible control
policies U is the class of feedback laws v, = U(z,,v.,s < t) where U satis-
fies the usual smoothness conditions (Wonham, 1971). The problem to be
solved is thus

re G

The partially observed problem is transformed into a completely observed
one in the augmented state (z,4,)", where it is recalled that we use the
approximation E{¢,|Y,} =~ E{¢,|X,vY,} for ¢,.

3 The averaging approximation

For the regime dynamic equation (2) and the measurement channel (8),
the estimate ¢, = E{¢,]Y,} is given by the following stochastic differential
equation (Wonham, 1965, Wong and Hajek, 1983) :

d$. = ﬂ'$,dt + G(al)dgt (6)

where the innovation process is djj, = dy, — H'$,dt with H = [hey oo hn]'.
The filter gain G(¢,) is

G(&) = (diag($e) — b)) Ho)®

As explained above, we do not pursue the exact solution of (5) but rather
look for an approximate solution with a strong practical appeal. We trans-
form the problem into a completely observed one as follows.

First the dynamics are averaged into

dxg = /‘ngdt + B-gutdt + D(dll)g (7)
with

A= E{A(r)|Y.)} = 3 Bua;

. =1

N
B, = E{B(r,)lY,} = Z‘EHB-
) =1




D { T lyt} = Z¢n

Similarly the cost matrices are replaced by

N
Q= E{Q(Te)lyt} = Z 5:.-@;

i=1

N
R, = E{R(Tt)|Yt} = Zfzu‘Rf
i=1

This averaging provides an acceptable approximation of the original prob-
lem when the regime estimate based on (3) is a good regime indicator.

For the averaged system (7) we have a completely observed optimization
problem that we solve through dynamic programming (Wonham, 1971).
T" 2 cost-to-go is defined as

~ ‘ - - ~ ~
V(t2,8) = B{[ (0.2 + v\ Rou.)dsla, = 2,8, = 3) (8)
t
The infinitesimal generator is
P oV ~ OV ,
Bv(taxt - I’(ﬁl = ¢) = _(97(t’x’¢) + E(tax: ) (A,IE t B(U.)
a s
+—=(t,z,6) Tl'¢p (9)
1 a*v _ 9%V
+=tr(G’ Gol) + ltr(D’ 9 D)

We then have the following result:

Theorem :

The solution of the optimization problem for the averaged model is

w = R B'Az, (10)
Where the n X n matrix A satisfies a Cauchy equation
oA - - - -
—E't- = AA+AA-ABR'BA+Q

IJ

G,G o? (1t)

'B'A
o v, o
YL 8

t=1
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with A(t;, ) =0.
The corresponding optimal performance is

J' = mz..t\(t.,,@o)xu. + #(ttngt..) (12)

where the scalar u satisfies

O 1 o, o0 Op_~ 1, O o
- — = =tr(D'AD) + —=1T'¢; + —tr(¢'—=—=Co; 13
o =zt (D'AD) a3, Lo+ gt 34,68 ) (15)

with li(t/) =0.

Proof : see the appendix.

This result calls for the following remarks.

Remark 1 :

The obtained control feeds back both the measured state z, and the
regime estimate {5,, thus providing a continuous adaptation to regime vari-
ations. Under general conditions on the continuity of the coefficients of (6),
(7) the Cauchy equation (11) has a non negative solution that is uniformly
bounded over [t,,¢;] x RY (Fleming and Rishel, 1975).

Remark 2 :

A similar averaging approximation was reported in (Lee et al., 1985) for
the case where the random influence on the model parameters is described
by a Brownian motion rather than our Markov chain.

Remark 3 :

In previous studies (Sworder and Chou, 1985, Mariton, 1988) an ap-
proximate solution was derived for the exact original optimal control prob-
lem. On the contrary the above theorem provides the exact solution to
a modification of the original problem obtained through an averaging ap-
proximation. Still another approach is possible whereby the solution with
a measured regime (Sworder, 1969) is averaged with weights given by the
a posteriori regime probabilities. It was shown in (Fragoso, 1988) that

this provides the optimal solution to a modified problem with a different
quadratic cost.

>
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4 Example

To illustrate the results of § 3 we consider a scalar system with two regimes

dz, = a(r)z.dt + b(r)u.dt + d(r)dw,

and we denote by a;, b; and d, the values of a,b and d when r, = i(1 = 1,2).

The transition matrix of the regime Markov chain is
m Mo
Tay Taz

The averaged parameters are written

with ¢ = E{r, = 1iY,}.
From the above theorem we then obtain
(by = b2)es + b2 2

N d \
“ (ry = ro)@u + 72 (Bu)z

where A($y) is solution of the Cauchy equation

I ~ "
% (91 = 12)bur + 42 + 2[(a) - a2) B0y + aa|A
[(6, - bo)buy + ba)? ~ L
- = AT+ i + {1 — —~—
(71 = 72)Bes + 72 [rder + 72 { ¢“)|8¢“

Y ~ o (hy = ha)? 3%
+4¢% (1 - 64) Y

with /\(t,, $g’,l) = 0.

(15)

The possibility of regime transitions is reflected in the dependance of A
on ¢,;. The implementations of (14), (15) requires the on-line solution of
a two point boundary value problem : (15) is integrated backward in time

with coefficients depending on regime estimates.




5 Conclusion

We considered an op.umal control problem for a Markovian jump linear
system. A new approximation was proposed based on an averaging of
the regime dependent parameters based on a high quality regime estimate.
This transformed the original partially observed problem into a completely
observed one.

Future work will analyze the stability of the original system under the
proposed control law and it will be interesting to analyze the error between
the true system and the averaged one.
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7 Appendix
We take a quadratic parametrization of the cost-to-go

V(t 20, &) = z0A(L &)z, + (8, &) (16)

The principle of optimality then gives

min LV (t,z, ) + 2.Q (B2, + v R(F)u} =0 (17)
The partial derivative of the above expression w.r.t. u is

ov

B(.) Py A AR ACALT
[4

so that XY
up = = (&) " B(B) (6 20, B))

o,

Using u; into Bellman’s equation we obtain an expression for A First we
evaluate separately the following partial derivatives

aa

A t t [[ t = ¢ _-'—'” t
33, (I (t, 8z ) TS zl;aq,)“( B0)iz.
and
2 A ()"A ns
tr(G’ AL, o) )Go: : , ;"'t
r( 350 ¢(J=f (t,B)z)Ga}) fl?_;“Z:,l Py alitls

Grouping terms in z,z, and constant terms we finally obtain (11) and (13)
of the theorem. The optimal cost (12) is then deduced from the definition
of the cost-to-go at t = {,,.




